Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Geroscience ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954129

RESUMEN

Canine mammary tumors (CMTs) represent a significant health concern in dogs, with a high incidence among intact female dogs. CMTs are a promising comparative model for human breast cancer, due to sharing several pathophysiological features. Additionally, CMTs have a strong genetic correlation with their human counterpart, including the expression of microRNAs (miRNAs). MiRNAs are a class of non-coding RNAs that play important roles in post-translational regulation of gene expression, being implicated in carcinogenesis, tumor progression, and metastasis. Moreover, miRNAs hold promise as diagnostic, prognostic, and metastatic biomarkers. Understanding the molecular mechanisms underlying CMTs is crucial for improving diagnosis, prognosis, and monitoring of treatments. Herein, we provide a comprehensive overview of the current knowledge on miRNAs in CMTs, highlighting their roles in carcinogenesis and their potential as biomarkers. Additionally, we highlight the current limitations and critically discuss the overarching challenges in this field, emphasizing the need for future research to translate miRNA findings into veterinary clinical practice.

2.
Small Methods ; : e2400857, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970553

RESUMEN

Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.

3.
Adv Healthc Mater ; : e2400522, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989725

RESUMEN

In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.

4.
Biomater Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034884

RESUMEN

The ordered arrangement of cells and extracellular matrix facilitates the seamless transmission of electrical signals along axons in the spinal cord and peripheral nerves. Therefore, restoring tissue geometry is crucial for neural regeneration. This study presents a novel method using proteins derived from the human amniotic membrane, which is modified with photoresponsive groups, to produce cryogels with aligned porosity. Freeze-casting was used to produce cryogels with longitudinally aligned pores, while cryogels with randomly distributed porosity were used as the control. The cryogels exhibited remarkable injectability and shape-recovery properties, essential for minimally invasive applications. Different tendencies in proliferation and differentiation were evident between aligned and random cryogels, underscoring the significance of the scaffold's microstructure in directing the behaviour of neural stem cells (NSC). Remarkably, aligned cryogels facilitated extensive cellular infiltration and migration, contrasting with NSC cultured on isotropic cryogels, which predominantly remained on the scaffold's surface throughout the proliferation experiment. Significantly, the proliferation assay demonstrated that on day 7, the aligned cryogels contained eight times more cells compared to the random cryogels. Consistent with the proliferation experiments, NSC exhibited the ability to differentiate into neurons within the aligned scaffolds and extend neurites longitudinally. In addition, differentiation assays showed a four-fold increase in the expression of neural markers in the cross-sections of the aligned cryogels. Conversely, the random cryogels exhibited minimal presence of cell bodies and extensions. The presence of synaptic vesicles on the anisotropic cryogels indicates the formation of functional synaptic connections, emphasizing the importance of the scaffold's microstructure in guiding neuronal reconnection.

5.
Soft Matter ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049813

RESUMEN

The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.

6.
ACS Sens ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038809

RESUMEN

In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution. Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique and has been proven efficient toward the detection of metabolites in biological media. However, profiling secreted metabolites in complex cellular environments such as those in tumor-stroma 3D in vitro models remains challenging. To address this limitation, we employed a SERS-based strategy to investigate the metabolic secretome of pancreatic tumor models within 3D cultures. We aimed to monitor the immunosuppressive potential of stratified pancreatic cancer-stroma spheroids as compared to 3D cultures of either pancreatic cancer cells or cancer-associated fibroblasts, focusing on the metabolic conversion of tryptophan into kynurenine by the IDO-1 enzyme. We additionally sought to elucidate the dynamics of tryptophan consumption in correlation with the size, temporal evolution, and composition of the spheroids, as well as assessing the effects of different drugs targeting the IDO-1 machinery. As a result, we confirm that SERS can be a valuable tool toward the optimization of cancer spheroids, in connection with their tryptophan metabolizing capacity, potentially allowing high-throughput spheroid analysis.

7.
Mater Horiz ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010747

RESUMEN

All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.

8.
Bioimpacts ; 14(3): 29945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938752

RESUMEN

Cell culture-based technologies are widely utilized in various domains such as drug evaluation, toxicity assessment, vaccine and biopharmaceutical development, reproductive technology, and regenerative medicine. It has been demonstrated that pre-adsorption of extracellular matrix (ECM) proteins including collagen, laminin and fibronectin provide more degrees of support for cell adhesion. The purpose of cell imprinting is to imitate the natural topography of cell membranes by gels or polymers to create a reliable environment for the regulation of cell function. The results of recent studies show that cell imprinting is a tool to guide the behavior of cultured cells by controlling their adhesive interactions with surfaces. Therefore, in this review we aim to compare different cell cultures with the imprinting method and discuss different cell imprinting applications in regenerative medicine, personalized medicine, disease modeling, and cell therapy.

9.
ACS Appl Polym Mater ; 6(11): 6820-6830, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903401

RESUMEN

Food smart packaging has emerged as a promising technology to address consumer concerns regarding food conservation and food safety. In this context, we report the rational design of azide-containing pyranoflavylium-based pH-sensitive dye for subsequent click chemistry conjugation toward a chitosan-modified alkyne. The chitosan-pyranoflavylium conjugate was characterized by infrared (ATR-FTIR), ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) spectroscopies, and dynamic light scattering (DLS), as well as its thermodynamic parameters related to their pH-dependent chromatic features. The fabrication of thin-films through electrostatic-driven layer-by-layer (LbL) assembly technology was first screened by quartz crystal microbalance with dissipation monitoring (QCM-D) onto gold substrates, and then free-standing (FS) multilayered membranes from polypropylene substrate were obtained using a homemade automatic dipping robot. The membranes' characterization included morphology analysis and thickness evaluation, assessed by scanning electron microscopy (SEM), pH-responsive color change performance tests using buffer solutions at different pH levels, and biogenic amines-enriched model solutions, demonstrating the feasibility and effectiveness of the chitosan-pyranoflavylium/alginate biomembranes for food spoilage monitoring. This work provides insights toward the development of innovative pH-responsive smart biomaterials for advanced and sustainable technological packaging solutions, which could significantly contribute to ensuring food safety and quality, while reducing food waste.

10.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833572

RESUMEN

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Asunto(s)
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Agregación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiales
11.
Vet World ; 17(5): 1052-1072, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38911075

RESUMEN

Chronic inflammation plays a crucial role in carcinogenesis. High levels of serum prostaglandin E2 and tissue overexpression of cyclooxygenase-2 (COX-2) have been described in breast, urinary, colorectal, prostate, and lung cancers as being involved in tumor initiation, promotion, progression, angiogenesis, and immunosuppression. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for several medical conditions to not only decrease pain and fever but also reduce inflammation by inhibiting COX and its product synthesis. To date, significant efforts have been made to better understand and clarify the interplay between cancer development, inflammation, and NSAIDs with a view toward addressing their potential for cancer management. This review provides readers with an overview of the potential use of NSAIDs and selective COX-2 inhibitors for breast cancer treatment, highlighting pre-clinical in vitro and in vivo studies employed to evaluate the efficacy of NSAIDs and their use in combination with other antineoplastic drugs.

12.
Macromol Biosci ; : e2400227, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940700

RESUMEN

The immune system is a pivotal player in determining tumor fate, contributing to the immunosuppressive microenvironment that supports tumor progression. Considering the emergence of biomaterials as promising platforms to mimic the tumor microenvironment, human platelet lysate (PLMA)-based hydrogel beads are proposed as 3D platforms to recapitulate the tumor milieu and recreate the synergistic tumor-macrophage communication. Having characterized the biomaterial-mediated pro-regenerative macrophage phenotype, an osteosarcoma spheroid encapsulated into a PLMA hydrogel bead is explored to study macrophage immunomodulation through paracrine signaling. The culture of PLMA-Tumor beads on the top of a 2D monolayer of macrophages reveals that tumor cells triggered morphologic and metabolic adaptations in macrophages. The cytokine profile, coupled with the upregulation of gene and protein anti-inflammatory biomarkers clearly indicates macrophage polarization toward an M2-like phenotype. Moreover, the increased gene expression of chemokines identified as pro-tumoral environmental regulators suggest a tumor-associated macrophage phenotype, exclusively stimulated by tumor cells. This pro-tumoral microenvironment is also found to enhance tumor invasiveness ability and proliferation. Besides providing a robust in vitro immunomodulatory tumor model that faithfully recreates the tumor-macrophage interplay, this human-based platform has the potential to provide fundamental insights into immunosuppressive signaling and predict immune-targeted response.

13.
Acta Biomater ; 183: 74-88, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838910

RESUMEN

The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue. STATEMENT OF SIGNIFICANCE: Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.


Asunto(s)
Matriz Extracelular Descelularizada , Técnicas Fotoacústicas , Humanos , Matriz Extracelular Descelularizada/química , Animales , Hidrogeles/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Andamios del Tejido/química , Ratones , Supervivencia Celular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo
14.
Biomater Sci ; 12(12): 3112-3123, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38738267

RESUMEN

Cardiovascular diseases are a major global cause of morbidity and mortality, and they are often characterized by cardiomyocytes dead that ultimately leads to myocardial ischemia (MI). This condition replaces functional cardiac tissue with fibrotic scar tissue compromising heart function. Injectable systems for the in situ delivery of cells or molecules to assist during tissue repair have emerged as promising approaches for tissue engineering, particularly for myocardial repair. Methacryloyl platelet lysates (PLMA) have been employed for constructing full human-based 3D cell culture matrices and demonstrated potential for xeno-free applications. In this study, we propose using PLMA to produce microparticles (MPs) serving as anchors for cardiac and endothelial cells and ultimately as injectable systems for cardiac tissue repair. The herein reported PLMA MPs were produced by droplet microfluidics and showed great properties for cell attachment. More importantly, it is possible to show the capacity of PLMA MPs to serve as cell microcarriers even in the absence of animal-derived serum supplementation in the culture media.


Asunto(s)
Materiales Biocompatibles , Plaquetas , Microgeles , Humanos , Plaquetas/química , Plaquetas/metabolismo , Microgeles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Técnicas de Cultivo de Célula , Ingeniería de Tejidos , Metacrilatos/química
15.
Adv Mater ; 36(30): e2405367, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739450

RESUMEN

Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs. Here, the manufacturing of shape-versatile fixed cell-based materials with immunomodulatory properties is reported. Living cell aggregates with different shapes (spheres and centimeter-long fibers) are fixed using a method compatible with maintenance of structural integrity, robustness, and flexibility of 3D constructs. The biological properties of living cells can be modulated before fixation, rendering an in vitro anti-inflammatory effect toward human macrophages, in line with a decreased activation of the nuclear factor kappa B (NF-κB) pathway that preponderantly correlated with the surface area of the materials. These findings are further corroborated in vivo in mouse skin wounds. Contact with fixed materials also reduces the proliferation of activated primary T lymphocytes, while promoting regulatory populations. The fixation of cellular constructs is proposed as a versatile phenotypic stabilization method that can be easily implemented to prepare immunomodulatory materials with therapeutic potential.


Asunto(s)
Inmunomodulación , Animales , Humanos , Inmunomodulación/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/citología , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/citología , Cicatrización de Heridas/efectos de los fármacos
16.
Bioact Mater ; 37: 315-330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38694764

RESUMEN

Cancer vaccination holds great promise for cancer treatment, but its effectiveness is hindered by suboptimal activation of CD8+ cytotoxic T lymphocytes, which are potent effectors to mediate anti-tumor immune responses. A possible solution is to switch antigen-presenting cells to present tumor antigens via the major histocompatibility complex class I (MHC-I) to CD8+ T cells - a process known as cross-presentation. To achieve this goal, we develop a three-dimensional (3D) scaffold vaccine to promote antigen cross-presentation by persisted toll-like receptor-2 (TLR2) activation after one injection. This vaccine comprises polysaccharide frameworks that "hook" TLR2 agonist (acGM) via tunable hydrophobic interactions and forms a 3D macroporous scaffold via click chemistry upon subcutaneous injection. Its retention-and-release of acGM enables sustained TLR2 activation in abundantly recruited dendritic cells in situ, inducing intracellular production of reactive oxygen species (ROS) in optimal kinetics that crucially promotes efficient antigen cross-presentation. The scaffold loaded with model antigen ovalbumin (OVA) or tumor specific antigen can generate potent immune responses against lung metastasis in B16-OVA-innoculated wild-type mice or spontaneous colorectal cancer in transgenic ApcMin/+ mice, respectively. Notably, it requires neither additional adjuvants nor external stimulation to function and can be adjusted to accommodate different antigens. The developed scaffold vaccine may represent a new, competent tool for next-generation personalized cancer vaccination.

17.
Adv Mater ; 36(27): e2313776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639337

RESUMEN

Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.


Asunto(s)
Bioimpresión , Tinta , Ingeniería de Tejidos , Humanos , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química
18.
ACS Appl Mater Interfaces ; 16(15): 18386-18399, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591243

RESUMEN

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.


Asunto(s)
Criogeles , Impresión Tridimensional , Humanos , Criogeles/química , Anisotropía , Adipocitos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
19.
Adv Healthc Mater ; 13(17): e2304012, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38545848

RESUMEN

The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions. Here, the response of MSCs, encapsulated in alginate hydrogels and cultured for 22 d, is explored using three different regimes: single, continuous, and intermittent stimulation with IFNγ. Exposure to IFNγ leads to a decrease in the secretion of IL-10, which is cyclically countered by IFNγ weaning. Conditioned media collected at different stages of pulsatile stimulation show an immunomodulatory potential toward macrophages, which directly correlates with IL-10 concentration in media. To understand whether the correlation between cyclic stimulation of MSCs and other biological actions can be observed, the effect on endothelial cells is studied, showcasing an overall modest influence on tube formation. Overall, the results describe the response of encapsulated MSCs to unusual pulsatile simulation regimens, exploring encapsulated MSCs as a living on-demand release system of tailored secretomes with recoverable immunomodulatory action.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Secretoma , Alginatos/química , Inmunomodulación/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/química , Células Cultivadas
20.
Artículo en Inglés | MEDLINE | ID: mdl-38546538

RESUMEN

Biomaterial-mediated bone tissue engineering (BTE) offers an alternative, interesting approach for the restoration of damaged bone tissues in postsurgery osteosarcoma treatment. This study focused on synthesizing innovative composite inks, integrating self-assembled silk fibroin (SF), tannic acids (TA), and electrospun bioactive glass nanofibers 70SiO2-25CaO-5P2O5 (BGNF). By synergistically combining the unique characteristics of these three components through self-assembly and microextrusion-based three-dimensional (3D) printing, our goal was to produce durable and versatile aerogel-based 3D composite scaffolds. These scaffolds were designed to exhibit hierarchical porosity along with antibacterial, antiosteosarcoma, and bone regeneration properties. Taking inspiration from mussel foot protein attachment chemistry involving the coordination of dihydroxyphenylalanine (DOPA) amino acids with ferric ions (Fe3+), we synthesized a tris-complex catecholate-iron self-assembled composite gel. This gel formation occurred through the coordination of oxidized SF (SFO) with TA and polydopamine-modified BGNF (BGNF-PDA). The dynamic nature of the coordination ligand-metal bonds within the self-assembled SFO matrix provided excellent shear-thinning properties, allowing the SFO-TA-BGNF complex gel to be extruded through a nozzle, facilitating 3D printing into scaffolds with outstanding shape fidelity. Moreover, the developed composite aerogels exhibited multifaceted features, including NIR-triggered photothermal antibacterial and in vitro photothermal antiosteosarcoma properties. In vitro studies showcased their excellent biocompatibility and osteogenic features as seeded cells successfully differentiated into osteoblasts, promoting bone regeneration in 21 days. Through comprehensive characterizations and biological validations, our antibacterial scaffold demonstrated promise as an exceptional platform for concurrent bone regeneration and bone cancer therapy, setting the stage for their potential clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...