Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 204(4): e0047921, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35285725

RESUMEN

Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.


Asunto(s)
Acinetobacter baumannii , Proteínas Intrínsecamente Desordenadas , Acinetobacter baumannii/metabolismo , Animales , Biopelículas , Desecación , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteómica
2.
Cell Chem Biol ; 28(11): 1628-1637.e4, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34146491

RESUMEN

Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Gammaproteobacteria/efectos de los fármacos , Antibacterianos/química , Células Cultivadas , Colistina , Farmacorresistencia Bacteriana/efectos de los fármacos , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana
3.
J Bacteriol ; 203(14): e0017921, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33972355

RESUMEN

The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT-minus suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS-minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by "reverting" its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS-minus allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS-minus phenotypes and help explain the selection of mexT-minus suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO, and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.


Asunto(s)
Mutagénesis Insercional/métodos , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas aeruginosa/metabolismo , Transformación Bacteriana
4.
Proc Natl Acad Sci U S A ; 117(30): 18010-18017, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32665440

RESUMEN

Mutant phenotype analysis of bacteria has been revolutionized by genome-scale screening procedures, but essential genes have been left out of such studies because mutants are missing from the libraries analyzed. Since essential genes control the most fundamental processes of bacterial life, this is a glaring deficiency. To address this limitation, we developed a procedure for transposon insertion mutant sequencing that includes essential genes. The method, called transformation transposon insertion mutant sequencing (TFNseq), employs saturation-level libraries of bacterial mutants generated by natural transformation with chromosomal DNA mutagenized heavily by in vitro transposition. The efficient mutagenesis makes it possible to detect large numbers of insertions in essential genes immediately after transformation and to follow their loss during subsequent growth. It was possible to order 45 essential processes based on how rapidly their inactivation inhibited growth. Inactivating ATP production, deoxyribonucleotide synthesis, or ribosome production blocked growth the fastest, whereas inactivating cell division or outer membrane protein synthesis blocked it the slowest. Individual mutants deleted of essential loci formed microcolonies of nongrowing cells whose sizes were generally consistent with the TFNseq ordering. The sensitivity of essential functions to genetic inactivation provides a metric for ranking their relative importance for bacterial replication and growth. Highly sensitive functions could represent attractive antibiotic targets since even partial inhibition should reduce growth.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Genes Bacterianos , Genes Esenciales , Viabilidad Microbiana/genética , Mutación , Tasa de Mutación , Eliminación de Secuencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-31285231

RESUMEN

Inhaled aztreonam is increasingly used for chronic Pseudomonas aeruginosa suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy in vivo We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being ftsI and ampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutant ampC alleles and performed artificial evolution of ampC for maximal activity against aztreonam. We found that naturally occurring ampC mutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other ß-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selection in vivo and in vitro, show that ampC has a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitness in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Fibrosis Quística/tratamiento farmacológico , Peptidoglicano Glicosiltransferasa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Resistencia betalactámica/genética , beta-Lactamasas/genética , Administración por Inhalación , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Aztreonam/metabolismo , Aztreonam/uso terapéutico , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Elementos Transponibles de ADN , Expresión Génica , Humanos , Mutación , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/aislamiento & purificación , Selección Genética
6.
PLoS Genet ; 15(6): e1008195, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31181062

RESUMEN

To characterize the consequences of eliminating essential functions needed for peptidoglycan synthesis, we generated deletion mutations of Acinetobacter baylyi by natural transformation and visualized the resulting microcolonies of dead cells. We found that loss of genes required for peptidoglycan precursor synthesis or polymerization led to the formation of polymorphic giant cells with diameters that could exceed ten times normal. Treatment with antibiotics targeting early or late steps of peptidoglycan synthesis also produced giant cells. The giant cells eventually lysed, although they were partially stabilized by osmotic protection. Genome-scale transposon mutant screening (Tn-seq) identified mutations that blocked or accelerated giant cell formation. Among the mutations that blocked the process were those inactivating a function predicted to cleave murein glycan chains (the MltD murein lytic transglycosylase), suggesting that giant cell formation requires MltD hydrolysis of existing peptidoglycan. Among the mutations that accelerated giant cell formation after ß-lactam treatment were those inactivating an enzyme that produces unusual 3->3 peptide cross-links in peptidoglycan (the LdtG L,D-transpeptidase). The mutations may weaken the sacculus and make it more vulnerable to further disruption. Although the study focused on A. baylyi, we found that a pathogenic relative (A. baumannii) also produced giant cells with genetic dependencies overlapping those of A. baylyi. Overall, the analysis defines a genetic pathway for giant cell formation conserved in Acinetobacter species in which independent initiating branches converge to create the unusual cells.


Asunto(s)
Acinetobacter/genética , Genes Esenciales/genética , Glicosiltransferasas/genética , Peptidoglicano/genética , Acinetobacter/enzimología , Antibacterianos/biosíntesis , Ciclo Celular/genética , División Celular/genética , Pared Celular/enzimología , Pared Celular/genética , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Eliminación de Gen , Genoma Bacteriano/genética , Peptidoglicano/biosíntesis , Peptidil Transferasas/genética , Eliminación de Secuencia/genética
7.
J Proteome Res ; 18(6): 2601-2612, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31060355

RESUMEN

Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.


Asunto(s)
Fibrosis Quística/diagnóstico , Proteoma/genética , Infecciones por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/aislamiento & purificación , Adulto , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Carbono/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Femenino , Glioxilatos/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Esputo/microbiología
8.
ACS Infect Dis ; 5(7): 1223-1230, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31002491

RESUMEN

In 2016, the World Health Organization deemed antibiotic resistance one of the biggest threats to global health, food security, and development. The need for new methods to combat infections caused by antibiotic resistant pathogens will require a variety of approaches to identifying effective new therapeutic strategies. One approach is the identification of small molecule adjuvants that potentiate the activity of antibiotics of demonstrated utility, whose efficacy is abated by resistance, both acquired and intrinsic. To this end, we have identified compounds that enhance the efficacy of antibiotics normally ineffective against Gram-negative pathogens because of the outer membrane permeability barrier. We identified two adjuvant compounds that dramatically enhance sensitivity of Acinetobacter baumannii to macrolide and glycopeptide antibiotics, with reductions in minimum inhibitory concentrations as high as 256-fold, and we observed activity across a variety of clinical isolates. Mode of action studies indicate that these adjuvants likely work by modulating lipopolysaccharide synthesis or assembly. The adjuvants were active in vivo in a Galleria mellonella infection model, indicating potential for use in mammalian infections.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/administración & dosificación , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Antibacterianos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Glicopéptidos/administración & dosificación , Glicopéptidos/farmacología , Macrólidos/administración & dosificación , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas , Bibliotecas de Moléculas Pequeñas/farmacología
9.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30893371

RESUMEN

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Asunto(s)
Proliferación Celular/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Cicatrización de Heridas/fisiología , Adulto , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Femenino , Aptitud Genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones , Infecciones por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Virulencia/fisiología , Infección de Heridas/metabolismo , Infección de Heridas/microbiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-29439964

RESUMEN

Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust ß-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.


Asunto(s)
Burkholderia pseudomallei/efectos de los fármacos , beta-Lactamas/farmacología , Meropenem/farmacología , Peptidoglicano/metabolismo
11.
mBio ; 8(6)2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233894

RESUMEN

Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis.IMPORTANCE The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/fisiología , Tobramicina/farmacología , Acinetobacter baumannii/enzimología , Infección Hospitalaria/microbiología , Elementos Transponibles de ADN/genética , Islas Genómicas , Pruebas de Sensibilidad Microbiana , Mutación , Análisis de Secuencia de ADN
12.
mBio ; 8(6)2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184015

RESUMEN

It is well known that many bacteria can survive in a growth-arrested state for long periods of time, on the order of months or even years, without forming dormant structures like spores or cysts. How is such longevity possible? What is the molecular basis of such longevity? Here we used the Gram-negative phototrophic alphaproteobacterium Rhodopseudomonas palustris to identify molecular determinants of bacterial longevity. R. palustris maintained viability for over a month after growth arrest due to nutrient depletion when it was provided with light as a source of energy. In transposon sequencing (Tn-seq) experiments, we identified 117 genes that were required for long-term viability of nongrowing R. palustris cells. Genes in this longevity gene set are annotated to play roles in a number of cellular processes, including DNA repair, tRNA modification, and the fidelity of protein synthesis. These genes are critically important only when cells are not growing. Three genes annotated to affect translation or posttranslational modifications were validated as bona fide longevity genes by mutagenesis and complementation experiments. These genes and others in the longevity gene set are broadly conserved in bacteria. This raises the possibility that it will be possible to define a core set of longevity genes common to many bacterial species.IMPORTANCE Bacteria in nature and during infections often exist in a nongrowing quiescent state. However, it has been difficult to define experimentally the molecular characteristics of this crucial element of the bacterial life cycle because bacteria that are not growing tend to die under laboratory conditions. Here we present and validate the phototrophic bacterium Rhodopseudomonas palustris as a model system for identification of genes required for the longevity of nongrowing bacteria. Growth-arrested R. palustris maintained almost full viability for weeks using light as an energy source. Such cells were subjected to large-scale mutagenesis to identify genes required for this striking longevity trait. The results define conserved determinants of survival under nongrowing conditions and create a foundation for more extensive studies to elucidate general molecular mechanisms of bacterial longevity.


Asunto(s)
Viabilidad Microbiana , Rhodopseudomonas/fisiología , Elementos Transponibles de ADN , Genes Bacterianos , Anotación de Secuencia Molecular , Mutagénesis Insercional , Rhodopseudomonas/genética , Análisis de Secuencia de ADN
13.
J Bacteriol ; 199(20)2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760848

RESUMEN

Klebsiella pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of K. pneumoniae, we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S. National Institutes of Health Clinical Center. The library is made up of 12,000 individually arrayed mutants of a carbapenemase deletion parent strain and provides coverage of 85% of the predicted genes. The library includes an average of 2.5 mutants per gene, with most insertion locations identified and confirmed in two independent rounds of Sanger sequencing. On the basis of an independent transposon sequencing assay, about half of the genes lacking representatives in this "two-allele" library are essential for growth on nutrient agar. To validate the use of the library for phenotyping, we screened candidate mutants for increased antibiotic sensitivity by using custom phenotypic microarray plates. This screening identified several mutations increasing sensitivity to ß-lactams (in acrB1, mcrB, ompR, phoP1, and slt1) and found that two-component regulator cpxAR mutations increased multiple sensitivities (to an aminoglycoside, a fluoroquinolone, and several ß-lactams). Strains making up the two-allele mutant library are available through a web-based request mechanism.IMPORTANCE K. pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are recognized as a top public health threat by the Centers for Disease Control and Prevention. The analysis of these major nosocomial pathogens has been limited by the experimental resources available for studying them. The work presented here describes a sequence-defined mutant library of a K. pneumoniae strain (KPNIH1) that represents an attractive model for studies of this pathogen because it is a recent isolate of the major sequence type that causes infection, the epidemiology of the outbreak it caused is well characterized, and an annotated genome sequence is available. The ready availability of defined mutants deficient in nearly all of the nonessential genes of the model strain should facilitate the genetic dissection of complex traits like pathogenesis and antibiotic resistance.

14.
Sci Rep ; 7(1): 223, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28303005

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Borrelia burgdorferi/enzimología , Burkholderia/enzimología , Encephalitozoon cuniculi/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Enfermedades Transmisibles/microbiología , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica
15.
Nat Commun ; 7: 13414, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834373

RESUMEN

The nosocomial pathogen Acinetobacter baumannii is a frequent cause of hospital-acquired infections worldwide and is a challenge for treatment due to its evolved resistance to antibiotics, including carbapenems. Here, to gain insight on A. baumannii antibiotic resistance mechanisms, we analyse the protein interaction network of a multidrug-resistant A. baumannii clinical strain (AB5075). Using in vivo chemical cross-linking and mass spectrometry, we identify 2,068 non-redundant cross-linked peptide pairs containing 245 intra- and 398 inter-molecular interactions. Outer membrane proteins OmpA and YiaD, and carbapenemase Oxa-23 are hubs of the identified interaction network. Eighteen novel interactors of Oxa-23 are identified. Interactions of Oxa-23 with outer membrane porins OmpA and CarO are verified with co-immunoprecipitation analysis. Furthermore, transposon mutagenesis of oxa-23 or interactors of Oxa-23 demonstrates changes in meropenem or imipenem sensitivity in strain AB5075. These results provide a view of porin-localized antibiotic inactivation and increase understanding of bacterial antibiotic resistance mechanisms.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/fisiología , Porinas/metabolismo , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Consumo de Alcohol en Menores
16.
J Bacteriol ; 198(5): 867-76, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712940

RESUMEN

UNLABELLED: Rhodopseudomonas palustris is an alphaproteobacterium that has served as a model organism for studies of photophosphorylation, regulation of nitrogen fixation, production of hydrogen as a biofuel, and anaerobic degradation of aromatic compounds. This bacterium is able to transition between anaerobic photoautotrophic growth, anaerobic photoheterotrophic growth, and aerobic heterotrophic growth. As a starting point to explore the genetic basis for the metabolic versatility of R. palustris, we used transposon mutagenesis and Tn-seq to identify 552 genes as essential for viability in cells growing aerobically on semirich medium. Of these, 323 have essential gene homologs in the alphaproteobacterium Caulobacter crescentus, and 187 have essential gene homologs in Escherichia coli. There were 24 R. palustris genes that were essential for viability under aerobic growth conditions that have low sequence identity but are likely to be functionally homologous to essential E. coli genes. As expected, certain functional categories of essential genes were highly conserved among the three organisms, including translation, ribosome structure and biogenesis, secretion, and lipid metabolism. R. palustris cells divide by budding in which a sessile cell gives rise to a motile swarmer cell. Conserved cell cycle genes required for this developmental process were essential in both C. crescentus and R. palustris. Our results suggest that despite vast differences in lifestyles, members of the alphaproteobacteria have a common set of essential genes that is specific to this group and distinct from that of gammaproteobacteria like E. coli. IMPORTANCE: Essential genes in bacteria and other organisms are those absolutely required for viability. Rhodopseudomonas palustris has served as a model organism for studies of anaerobic aromatic compound degradation, hydrogen gas production, nitrogen fixation, and photosynthesis. We used the technique of Tn-seq to determine the essential genes of R. palustris grown under heterotrophic aerobic conditions. The transposon library generated in this study will be useful for future studies to identify R. palustris genes essential for viability under specialized growth conditions and also for survival under conditions of stress.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Rhodopseudomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , ADN Bacteriano , Biblioteca de Genes , Mutación
17.
Chem Biol ; 22(11): 1521-1530, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26548613

RESUMEN

Interspecies protein-protein interactions are essential mediators of infection. While bacterial proteins required for host cell invasion and infection can be identified through bacterial mutant library screens, information about host target proteins and interspecies complex structures has been more difficult to acquire. Using an unbiased chemical crosslinking/mass spectrometry approach, we identified interspecies protein-protein interactions in human lung epithelial cells infected with Acinetobacter baumannii. These efforts resulted in identification of 3,076 crosslinked peptide pairs and 46 interspecies protein-protein interactions. Most notably, the key A. baumannii virulence factor, OmpA, was identified as crosslinked to host proteins involved in desmosomes, specialized structures that mediate host cell-to-cell adhesion. Co-immunoprecipitation and transposon mutant experiments were used to verify these interactions and demonstrate relevance for host cell invasion and acute murine lung infection. These results shed new light on A. baumannii-host protein interactions and their structural features, and the presented approach is generally applicable to other systems.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/fisiopatología , Acinetobacter baumannii/fisiología , Interacciones Huésped-Patógeno , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Ratones , Microscopía Confocal , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Factores de Virulencia/química , Factores de Virulencia/metabolismo
18.
Cell Host Microbe ; 18(3): 307-19, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26299432

RESUMEN

Bacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting ten CF lung pairs and studying ∼12,000 regional isolates, we were able to investigate whether clonally related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally. Phylogenetic analysis of genome sequences showed that regional isolation of P. aeruginosa drives divergent evolution. We investigated the consequences of regional evolution by studying isolates from mildly and severely diseased lung regions and found evolved differences in bacterial nutritional requirements, host defense and antibiotic resistance, and virulence due to hyperactivity of the type 3 secretion system. These findings suggest that bacterial intermixing is limited in CF lungs and that regional selective pressures may markedly differ. The findings also may explain how specialized bacterial variants arise during infection and raise the possibility that pathogen diversification occurs in other chronic infections characterized by spatially heterogeneous conditions.


Asunto(s)
Fibrosis Quística/complicaciones , Variación Genética , Pulmón/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/genética , Humanos , Datos de Secuencia Molecular , Pseudomonas aeruginosa/aislamiento & purificación , Análisis de Secuencia de ADN
19.
Mol Cell Proteomics ; 14(8): 2126-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018413

RESUMEN

Genetically susceptible bacteria become antibiotic tolerant during chronic infections, and the mechanisms responsible are poorly understood. One factor that may contribute to differential sensitivity in vitro and in vivo is differences in the time-dependent tobramycin concentration profile experienced by the bacteria. Here, we examine the proteome response induced by subinhibitory concentrations of tobramycin in Pseudomonas aeruginosa cells grown under planktonic conditions. These efforts revealed increased levels of heat shock proteins and proteases were present at higher dosage treatments (0.5 and 1 µg/ml), while less dramatic at 0.1 µg/ml dosage. In contrast, many metabolic enzymes were significantly induced by lower dosages (0.1 and 0.5 µg/ml) but not at 1 µg/ml dosage. Time course proteome analysis further revealed that the increase of heat shock proteins and proteases was most rapid from 15 min to 60 min, and the increased levels sustained till 6 h (last time point tested). Heat shock protein IbpA exhibited the greatest induction by tobramycin, up to 90-fold. Nevertheless, deletion of ibpA did not enhance sensitivity to tobramycin. It seemed possible that the absence of sensitization could be due to redundant functioning of IbpA with other proteins that protect cells from tobramycin. Indeed, inactivation of two heat shock chaperones/proteases in addition to ibpA in double mutants (ibpA/clpB, ibpA/PA0779 and ibpA/hslV) did increase tobramycin sensitivity. Collectively, these results demonstrate the time- and concentration-dependent nature of the P. aeruginosa proteome response to tobramycin and that proteome modulation and protein redundancy are protective mechanisms to help bacteria resist antibiotic treatments.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteoma/metabolismo , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacología , Ontología de Genes , Pruebas de Sensibilidad Microbiana , Pliegue de Proteína/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Reproducibilidad de los Resultados , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 112(16): 5189-94, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848053

RESUMEN

The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition--growth in a rich undefined medium--and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism's carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Carbono/metabolismo , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Genes Bacterianos , Genes Esenciales , Mutagénesis Insercional/genética , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...