Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 137(2): 215-240, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070055

RESUMEN

The genus Mimosa L. (Leguminosae; Caesalpinioideae; mimosoid clade), comprising more than 500 species, is an intriguing genus because, like other members of the mimosoid clade, it presents an enormous variation in floral characteristics and high merism lability. Thus, this study aimed to elucidate the floral development and identify which ontogenetic pathways give rise to merism variation and andromonoecy in Mimosa caesalpiniifolia, M. pudica, M. bimucronata, and M. candollei. Floral buds at various stages of development and flowers were collected, fixed, and processed for surface analysis (SEM). The development of the buds is synchronous in the inflorescences. Sepals appear simultaneously as individualized primordia in M. caesalpiniifolia and in reversed unidirectional order in M. bimucronata, with union and formation of an early ring-like calyx. Petal primordia appear in unidirectional order, with a noticeably elliptical shape in M. caesalpiniifolia. The wide merism variation in Mimosa results from the absence of organs from inception in the perianth and androecium whorls: in dimerous, trimerous, or tetramerous flowers, the additional organs primordia to compose the expected pentamerous flowers are not initiated. The haplostemonous androecium of M. pudica results from the absence of antepetalous stamens from inception. In the case of intraspecific variations (instabilities), there is no initiation and subsequent abortion of organs in the events of reduction in merosity. In addition, extra primordia are initiated in supernumerary cases. On the other hand, staminate flowers originate from the abortion of the carpel. Mimosa proved to be an excellent model for studying merism variation. The lability is associated with actinomorphic and rather congested flowers in the inflorescences. Our data, in association with others of previous studies, suggest that the high lability in merism appeared in clades that diverged later in the mimosoid clade. Thus, phylogenetic reconstruction studies are needed for more robust evolutionary inferences. The present investigation of ontogenetic processes was relevant to expand our understanding of floral evolution in the genus Mimosa and shed light on the unstable merism in the mimosoid clade.


Asunto(s)
Fabaceae , Mimosa , Fabaceae/genética , Filogenia , Flores , Inflorescencia
2.
PhytoKeys ; 232: 1-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705963

RESUMEN

Erythrina L. is a genus that comprises ca. 120 to 130 species distributed throughout the tropics and subtropics of the world. Linnaeus established the genus in Genera Plantarum (1737) and the first binomial name given to a Brazilian Erythrina was E.crista-galli L., described by himself in Mantissa Plantarum (1767). Vellozo proposed in Florae Fluminensis (1790-1881) the first treatment of the genus in Brazil, where he treated three species from the states of Rio de Janeiro and São Paulo. Martins and Tozzi proposed the most recent treatment in 2018, where the authors recognized 11 valid names and presented three new synonyms. Despite extensive efforts already made in the genus, previous works did not treat all names related to the valid ones for Brazilian Erythrina. The present work is the most comprehensive and up-to-date nomenclatural treatment for the genus in Brazil, covering all 84 related names found on digital nomenclatural databases. Here we analyze 64 protologues, update typification statuses, propose five new synonyms, 13 new lectotypes (11 first-step, two second-step) and one neotype, linking all protologues and type specimens with their corresponding available digital sources, and make additional notes on etymology and vernacular names.

3.
AoB Plants ; 14(5): plac041, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36267642

RESUMEN

The division of labour hypothesis between stamens has explained the evolution of divergent functions between dimorphic stamens in the same flower. However, little is known about whether the distinct type of stamens differs in attractiveness to pollinators. Therefore, we investigate whether the two types of stamens commonly found in Swartzia have different visual and olfactory attractants. We performed observations of anthesis dynamics, registration and collection of floral visitors, measurements of reflectance of floral parts and chemical analysis of the volatile organic compounds of the floral parts of two species, S. flaemingii and S. simplex. Both species have two distinct sets of stamens: one with smaller and abundant stamens in the centre of the flower and the other with fewer but larger abaxial stamens. The sets differ in UV reflectance (only S. simplex) and exhibit a distinct chromatic contrast. Concerning olfactory attractiveness, aliphatic compounds make up most of the odour of the two species, both whole flowers and most of their floral organs. On the other hand, only S. simplex presented apocarotenoids (as ionones) and benzenoids. Furthermore, there are differences in the proportion of volatiles emitted by the stamen in both cases, as the high proportion of sesquiterpenes among the smaller stamens compared to the larger ones. In conclusion, the two types of stamens found in S. flaemingii and S. simplex show a distinct attractiveness. In addition, our data have demonstrated diverse ways of differential attractiveness both between distinct stamens set per flower and between the two species from the same pollen flowers genus.

4.
AoB Plants ; 13(5): plab054, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34512942

RESUMEN

Buzz-pollinated pollen flowers have pollen as the primary resource for pollinators and must deal with a conflict between the exploitation of pollen grains by bees and pollination success. It has been hypothesized that heterostemony allows division of labour between stamens as a solution to the pollen dilemma. To test the division of labour hypothesis, we chose Cassia fistula, which has a trimorphic androecium and analysed androecium development, pollen grain release mechanisms and visitor behaviour. We explored the reflectance of floral organs and carried out an exclusion experiment to test the attractiveness of each stamen morph to the bee species. Finally, we explored the structural, ultrastructural and functional variation between the pollen grains, including pollen viability across stamen morphs. The differences among the three stamen morphs, which is developed from two whorls of the stamen, are the first evidence of the division of labour in our study system. Large Bombus and Xylocopa bees actively and exclusively exploited the pollen grains from the central poricidal anthers generating pollen deposition on their bodies. The reflectance pattern of floral organs indicated a targeting of these large bees to the central anthers, corroborated by the anther manipulative experiment where only the exclusion of the anthers positioned in the flower centre, especially the intermediate stamens, reduced bee visits. Both results revealed a division of labour, in which the intermediate stamen morph was responsible for both floral attractiveness and pollen resources. Only the largest stamen morph produced germinable pollen grains, highlighting their role as pollinating stamens. The smallest stamen morph has a less clear function, likely representing an economy in pollen production for feeding function. Our findings suggest that the evolution of the trimorphic androecium is associated with division of labour in large pollen flowers and can represent a strong strategy for circumventing the pollen dilemma, optimizing the feeding function by reducing pollen grain investment from central anthers.

5.
J Plant Res ; 134(1): 127-139, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33403567

RESUMEN

The Swartzia species are commonly known as bloodwood due to the red exudate released from the stem after injury. This exudate has aroused great interest, and an integrative study is essential to describe it in detail. Thus, this work aimed to identify the red exudate's secreting-site in S. flaemingii and S. langsdorffii, and determine if it is a latex or a resin. Samples of the stem bark and the secondary xylem were prepared for histological analysis. Fresh exudates were dissolved in deuterated methanol and analyzed by 1H-NMR; other samples were resuspended in MeOH:H2O (9:1), partitioned with organic solvents and analyzed by direct infusion mass spectrometry. Total phenolic and total flavonoid contents were determined spectrophotometrically, and antioxidant capacity was determined using ferric reducing antioxidant power assay. The results showed that the exudate is a red latex produced by articulated laticifers located among the phloem cells. The latex is composed of sucrose, catechin glucosides, chlorophyll derivatives, and hederagenin-type saponins. Both samples of S. flaemingii and S. langsdorffii presented high amounts of phenolics and flavonoids, as well as a strong antioxidant capacity. The anatomical study showed that the secreting-site of the Swartzia red exudates were laticifers. This finding allows us to exclude other substances such as resin or oleoresin, generally produced by secretory cavities or ducts. Furthermore, since laticifers are rare in Fabaceae, this finding is significant, and represents an essential taxonomic feature. The showy red color is due to the large amounts of flavonoids. This latex probably has a protective role against microorganisms and photodamage. The bioactive potential of this exudate inspires further studies, which may boost the economic importance of Swartzia.


Asunto(s)
Fabaceae , Antioxidantes , Exudados y Transudados , Flavonoides , Látex , Floema , Extractos Vegetales
6.
Am J Bot ; 89(10): 1553-69, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21665582

RESUMEN

Floral initiation and development were examined using scanning electron microscopy in Exostyles venusta, Harleyodendron unifoliolatum, Lecointea hatschbachii, and Zollernia ilicifolia. Common features include (1) unidirectional sepal initiation, (2) simultaneous petal initiation, (3) unidirectional initiation of each stamen whorl (except in the antesepalous whorl in Lecointea and Exostyles), (4) overlap in time of initiation of the two stamen whorls, and (5) initiation of the carpel concurrently with petals. Significant developmental features include (1) the first sepal median abaxial in all except Lecointea where it is non-median abaxial; (2) intraspecific variation in petal aestivation in Exostyles, Harleyodendron, and Lecointea; (3) initiation of antepetalous stamens before the antesepalous ones in Zollernia, Exostyles, and Lecointea; and (4) ovule initiation before the carpel margins are fused in Exostyles. The stamen sequence has not been found in any other legumes. The following late developmental events distinguish the four genera from each other: copious hairs hold the anthers together as a domelike structure at anthesis in Harleyodendron; zygomorphy in Zollernia results from differing petal reflexion; late hypanthium in Exostyles, Lecointea, and Holocalyx (no hypanthium in Harleyodendron or Zollernia); and reflexed sepal lobes in Exostyles, Harleyodendron, and Zollernia but not in Holocalyx and Lecointea. The genera studied here are ontogenetically more similar to taxa of Sophoreae than to other Swartzieae that have been investigated. None of the taxa studied here has a ring meristem, the structure that characterizes the remaining swartzioid taxa studied elsewhere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA