Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Acad Radiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043515

RESUMEN

RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical characteristics for the non-invasive prediction of PNI in patients with PCa. MATERIALS AND METHODS: In this prospective study, 557 PCa patients who underwent preoperative MRI and radical prostatectomy were recruited and randomly divided into the training and the validation cohorts at a ratio of 7:3. Clinical model for predicting PNI was constructed by univariate and multivariate regression analyses on various clinical indicators, followed by logistic regression. Radiomics and deep learning methods were used to develop different MRI-based radiomics and deep learning models. Subsequently, the clinical, radiomics, and deep learning signatures were combined to develop the integrated deep learning-radiomics-clinical model (DLRC). The performance of the models was assessed by plotting the receiver operating characteristic (ROC) curves and precision-recall (PR) curves, as well as calculating the area under the ROC and PR curves (ROC-AUC and PR-AUC). The calibration curve and decision curve were used to evaluate the model's goodness of fit and clinical benefit. RESULTS: The DLRC model demonstrated the highest performance in both the training and the validation cohorts, with ROC-AUCs of 0.914 and 0.848, respectively, and PR-AUCs of 0.948 and 0.926, respectively. The DLRC model showed good calibration and clinical benefit in both cohorts. CONCLUSION: The DLRC model, which integrated clinical, radiomics, and deep learning signatures, can serve as a robust tool for predicting PNI in patients with PCa, thus aiding in developing effective treatment strategies.

2.
Br J Radiol ; 97(1157): 1029-1037, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460184

RESUMEN

OBJECTIVES: Since neither abdominal pain nor pancreatic enzyme elevation is specific for acute pancreatitis (AP), the diagnosis of AP in patients with pancreaticobiliary maljunction (PBM) may be challenging when the pancreas appears normal or nonobvious on CT. This study aimed to develop a quantitative radiomics-based nomogram of pancreatic CT for identifying AP in children with PBM who have nonobvious findings on CT. METHODS: PBM patients with a diagnosis of AP evaluated at the Children's Hospital of Soochow University from June 2015 to October 2022 were retrospectively reviewed. The radiological features and clinical factors associated with AP were evaluated. Based on the selected variables, multivariate logistic regression was used to construct clinical, radiomics, and combined models. RESULTS: Two clinical parameters and 6 radiomics characteristics were chosen based on their significant association with AP, as demonstrated in the training (area under curve [AUC]: 0.767, 0.892) and validation (AUC: 0.757, 0.836) datasets. The radiomics-clinical nomogram demonstrated superior performance in both the training (AUC, 0.938) and validation (AUC, 0.864) datasets, exhibiting satisfactory calibration (P > .05). CONCLUSIONS: Our radiomics-based nomogram is an accurate, noninvasive diagnostic technique that can identify AP in children with PBM even when CT presentation is not obvious. ADVANCES IN KNOWLEDGE: This study extracted imaging features of nonobvious pancreatitis. Then it developed and evaluated a combined model with these features.


Asunto(s)
Nomogramas , Mala Unión Pancreaticobiliar , Pancreatitis , Tomografía Computarizada por Rayos X , Humanos , Pancreatitis/diagnóstico por imagen , Niño , Femenino , Masculino , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Mala Unión Pancreaticobiliar/diagnóstico por imagen , Adolescente , Preescolar , Páncreas/diagnóstico por imagen , Páncreas/anomalías , Enfermedad Aguda , Radiómica
3.
Front Immunol ; 15: 1334109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481996

RESUMEN

Background: As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods: We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results: Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion: Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Proteína HMGB1 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Biomarcadores , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo
4.
Int J Biol Macromol ; 264(Pt 2): 130761, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467213

RESUMEN

Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.


Asunto(s)
Diabetes Mellitus , Angiopatías Diabéticas , Humanos , Sirtuina 1/metabolismo , Diabetes Mellitus/metabolismo , Estrés Oxidativo/fisiología , Inflamación
5.
Cell Commun Signal ; 22(1): 114, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347622

RESUMEN

Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.


Asunto(s)
Enfermedades Renales , Sirtuinas , Humanos , Sirtuinas/metabolismo , Enfermedades Renales/tratamiento farmacológico , Estrés Oxidativo , Reparación del ADN
6.
J Clin Pediatr Dent ; 48(1): 41-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239155

RESUMEN

Protracting lower second molars and uprighting horizontally impacted third molars is a significant orthodontic challenge in patients who require the extraction of severely decayed first molars. Here, we describe the use of biomechanics to upright 90°-tilted lower third molars following second molar protraction. Herein, we introduce a technique for uprighting the lower third molars by (1) the placement of superelastic nickel titanium archwires, (2) bonding, and (3) repositioning of a buccal tube in a tilted position to compensate for the efficiency of Ni-Ti (nickel-titanium) wire. The treatment mechanics used for our two cases showed that even severely impacted third molars can be uprighted by routine continuous straight-wire techniques. This technique proved to be a simple, efficient and reliable treatment option for uprighting horizontally impacted third molars.


Asunto(s)
Aleaciones , Tercer Molar , Diente Impactado , Humanos , Níquel , Titanio , Técnicas de Movimiento Dental , Diente Molar , Diente Impactado/terapia , Mandíbula
7.
J Ethnopharmacol ; 324: 117721, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38199335

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and currently there are no specific and effective drugs for its treatment. Podocyte injury is a detrimental feature and the major cause of albuminuria in DN. We previously reported Tangshen Formula (TSF), a Chinese herbal medicine, has shown therapeutic effects on DN. However, the underlying mechanisms remain obscure. AIM OF THE STUDY: This study aimed to explore the protective effect of TSF on podocyte apoptosis in DN and elucidate the potential mechanism. MATERIALS AND METHODS: The effects of TSF were assessed in a murine model using male KKAy diabetic mice, as well as in advanced glycation end products-stimulated primary mice podocytes. Transcription factor EB (TFEB) knockdown primary podocytes were employed for mechanistic studies. In vivo and in vitro studies were performed and results assessed using transmission electron microscopy, immunofluorescence staining, and western blotting. RESULTS: TSF treatment alleviated podocyte apoptosis and structural impairment, decreased albuminuria, and mitigated renal dysfunction in KKAy mice. Notably, TSF extracted twice showed a more significant reduction in proteinuria than TSF extracted three times. Accumulation of autophagic biomarkers p62 and LC3, and aberrant autophagic flux in podocytes of DN mice were significantly altered by TSF therapy. Consistent with the in vivo results, TSF prevented the apoptosis of primary podocytes exposed to AGEs and activated autophagy. However, the anti-apoptosis capacity of TSF was countered by the autophagy-lysosome inhibitor chloroquine. We found that TSF increased the nuclear translocation of TFEB in diabetic podocytes, and thus upregulated transcription of its several autophagic target genes. Pharmacological activation of TFEB by TSF accelerated the conversion of autophagosome to autolysosome and lysosomal biogenesis, further augmented autophagic flux. Conversely, TFEB knockdown negated the favorable effects of TSF on autophagy in AGEs-stimulated primary podocytes. CONCLUSIONS: These findings indicate TSF appears to attenuate podocyte apoptosis and promote autophagy in DN via the TFEB-mediated autophagy-lysosome system. Thus, TSF may be a therapeutic candidate for DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Podocitos , Ratones , Masculino , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Albuminuria/tratamiento farmacológico , Albuminuria/prevención & control , Albuminuria/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Autofagia , Apoptosis , Lisosomas/metabolismo
8.
Int Urol Nephrol ; 56(1): 155-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37422767

RESUMEN

PURPOSE: To evaluate the key topics and emerging trends in the field of cardiorenal syndrome type 4 (CRS-4) by bibliometrics and visual analysis. METHODS: Citespace, VOSviewer, and Bibliometrix package were used to analyze the collected data from the Web of Science Core Collection, including publication trends, leading countries, active authors and institutions, co-cited references, journals, and keyword analysis. RESULTS: Finally, 2267 articles were obtained. From 2004 to 2022, the number of publications was increasing year by year. A total of 735 authors from 543 institutions in 94 countries/regions participated in the publication of CRS-4 field, which were mostly from North America and Europe. Most of the co-cited references were reviews or guidelines from kidney/heart specialist journals or top journals. The journals concerning nephrology had a higher academic influence in this field. Oxidative stress and inflammation remained hot topics in CRS-4 research, as well as uremic toxins. Fibroblast growth factor 23 and klotho were emerging trends in recent years. Sodium glucose cotransporter 2 (SGLT2) inhibitors were the latest frontier hot spots. Future research advances may pay more attention to the prevention and prognosis assessment of CRS-4. CONCLUSION: Our study provides some key information for scholars to determine the direction of future research.


Asunto(s)
Síndrome Cardiorrenal , Humanos , Síndrome Cardiorrenal/terapia , Bibliometría , Riñón , Corazón , Europa (Continente)
9.
Eur J Radiol ; 169: 111184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931375

RESUMEN

PURPOSE: To investigate whether moyamoya disease (MMD) and atherosclerotic moyamoya syndrome (AS-MMS) differ in vascular morphology and perfusion characteristics using T1w-CUBE imaging and multiple post-labeling delay 3D pseudo-continuous arterial spin labeling imaging (MP 3D-PcASL), and to explore the potential of the combined techniques for accurate diagnosis of both diseases. METHOD: This prospective study enrolled 51 patients with moyamoya vasculopathy, including 26 with MMD and 25 with AS-MMS. All patients underwent digital subtraction angiography (DSA)/magnetic resonance angiography (MRA), T1w-CUBE imaging, and MP 3D-PCASL examinations. Morphological parameters, including the outer diameter, maximum wall thickness, luminal stenosis morphology, degree of wall enhancement, number of collateral vessels, and perfusion parameters, such as cerebral blood flow (CBF) and arterial transit time (ATT), were measured. After univariate analysis between the two groups, logistic regression models based on the derived parameters of T1w-CUBE imaging, MP 3D-PCASL, and combined imaging were implemented, and receiver operating characteristic (ROC) curves were generated to compare the discriminatory power of the different imaging methods for the diagnosis of MMD. RESULTS: With T1w-CUBE imaging, MMD showed a smaller outer diameter (2.76 ± 0.39 vs. 3.07 ± 0.49 mm) and maximum wall thickness (1.27 ± 0.19 vs. 1.49 ± 0.24 mm) than AS-MMS (both P < 0.05). Using MP 3D-pcASL, the resultant CBF (36.64 ± 14.28 vs. 28.77 ± 8.63 mL/100 g/min) was higher in MMD relative to AS-MMS, while an opposite pattern was shown for ATT (1.61 ± 0.09 vs. 1.72 ± 0.13 s; both P < 0.05). Robust diagnostic efficacies for disease differentiation, confirmed by high areas under the ROC curve (AUCs) (>0.808), were separately shown with T1w-CUBE and MP 3D-pcASL derived parameters. However, the combined multivariate logistic regression model showed optimaldiagnostic efficacy(AUC: 0.938; P < 0.05). CONCLUSIONS: Combined T1w-CUBE imaging and MP 3D-PCASL provides distinctive morphological and functional features to evaluate vessel walls and cerebral perfusion, and might help distinguish MMD from AS-MMS.


Asunto(s)
Enfermedad de Moyamoya , Humanos , Enfermedad de Moyamoya/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Arterias , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Circulación Cerebrovascular/fisiología
10.
Int J Biol Sci ; 19(15): 5020-5035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781525

RESUMEN

High-mobility group protein box 1 (HMGB1) is a member of a highly conserved high-mobility group protein present in all cell types. HMGB1 plays multiple roles both inside and outside the cell, depending on its subcellular localization, context, and post-translational modifications. HMGB1 is also associated with the progression of various diseases. Particularly, HMGB1 plays a critical role in CKD progression and prognosis. HMGB1 participates in multiple key events in CKD progression by activating downstream signals, including renal inflammation, the onset of persistent fibrosis, renal aging, AKI-to-CKD transition, and important cardiovascular complications. More importantly, HMGB1 plays a distinct role in the chronic pathophysiology of kidney disease, which differs from that in acute lesions. This review describes the regulatory role of HMGB1 in renal homeostasis and summarizes how HMGB1 affects CKD progression and prognosis. Finally, some promising therapeutic strategies for the targeted inhibition of HMGB1 in improving CKD are summarized. Although the application of HMGB1 as a therapeutic target in CKD faces some challenges, a more in-depth understanding of the intracellular and extracellular regulatory mechanisms of HMGB1 that underly the occurrence and progression of CKD might render HMGB1 an attractive therapeutic target for CKD.


Asunto(s)
Lesión Renal Aguda , Proteína HMGB1 , Insuficiencia Renal Crónica , Humanos , Proteína HMGB1/metabolismo , Lesión Renal Aguda/epidemiología , Insuficiencia Renal Crónica/tratamiento farmacológico , Riñón/metabolismo , Envejecimiento , Progresión de la Enfermedad
11.
Biomed Pharmacother ; 167: 115499, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742600

RESUMEN

Sirtuins are a family of NAD+ III-dependent histone deacetylases that consists of seven family members, Sirt1-Sirt7, which regulate various signalling pathways and are involved in many critical biological processes of kidney diseases. Traditional Chinese medicine (TCM), as an essential part of the global healthcare system, has multi-component and multi-pathway therapeutic characteristics and plays a role in preventing and controlling various diseases. Through ongoing collaboration with modern medicine, TCM has recently achieved many remarkable advancements in theoretical investigation, mechanistic research, and clinical applications related to kidney diseases. Therefore, a comprehensive and systematic summary of TCM that focuses on sirtuins as the intervention target for kidney diseases is necessary. This review introduces the relationship between abnormal sirtuins levels and common kidney diseases, such as diabetic kidney disease and acute kidney injury. Based on the standard biological processes, such as inflammation, oxidative stress, autophagy, mitochondrial homeostasis, and fibrosis, which are underlying kidney diseases, comprehensively describes the roles and regulatory effects of TCM targeting the sirtuins family in various kidney diseases.

12.
Front Endocrinol (Lausanne) ; 14: 1142276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635982

RESUMEN

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Riñón , Apoptosis , Autofagia
13.
BMC Pediatr ; 23(1): 427, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633885

RESUMEN

BACKGROUND: Pancreaticobiliary maljunction (PBM) is a congenital defect, with risk of developing various pancreaticobiliary and hepatic complications. The presentations of PBM in children and adults are believed to be different, but studies on PBM children of different age groups are limited. This study was to evaluate clinicopathologic characteristics and outcomes in PBM children of different ages. METHODS: A total of 166 pediatric patients with PBM were reviewed retrospectively. Clinicopathological, imaging, laboratory, surgical, and follow-up data were collected and analyzed. The patients were divided into three age groups, namely, group A (< 1 year, n = 31), group B (1-3 years, n = 63), and group C (> 3 years, n = 72). RESULTS: The major clinical manifestation was jaundice in group A and abdominal pain and vomiting in groups B and C. Acute pancreatitis was more often seen in group C than group A. The length of common channel was significantly longer in group C than group A, while the maximum diameter of common bile duct in group C was smaller than that in group A. Cholangitis and cholecystitis were more commonly performed in groups B and C, while hepatic fibrosis in group A. Whether preoperatively or postoperatively, group C was more likely to have elevated serum amylase, while groups A and B were more likely to present with abnormal liver function indicators, including the increase of aspartate transaminase, alanine transaminase, and gamma-glutamyl transpeptidase. CONCLUSION: Presentation of PBM varies among different pediatric age groups, thus suggesting that targeted management should be carried out according to these differences.


Asunto(s)
Mala Unión Pancreaticobiliar , Pancreatitis , Adulto , Humanos , Niño , Enfermedad Aguda , Estudios Retrospectivos , Dolor Abdominal
14.
Front Immunol ; 14: 1185317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545494

RESUMEN

Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Polifenoles/farmacología , Polifenoles/uso terapéutico , Células Endoteliales/patología , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico
15.
Surg Today ; 53(12): 1352-1362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37160428

RESUMEN

PURPOSE: To develop machine learning (ML) models to predict the surgical risk of children with pancreaticobiliary maljunction (PBM) and biliary dilatation. METHODS: The subjects of this study were 157 pediatric patients who underwent surgery for PBM with biliary dilatation between January, 2015 and August, 2022. Using preoperative data, four ML models were developed, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost). The performance of each model was assessed via the area under the receiver operator characteristic curve (AUC). Model interpretations were generated by Shapley Additive Explanations. A nomogram was used to validate the best-performing model. RESULTS: Sixty-eight patients (43.3%) were classified as the high-risk surgery group. The XGBoost model (AUC = 0.822) outperformed the LR (AUC = 0.798), RF (AUC = 0.802) and SVC (AUC = 0.804) models. In all four models, enhancement of the choledochal cystic wall and an abnormal position of the right hepatic artery were the two most important features. Moreover, the diameter of the choledochal cyst, bile duct variation, and serum amylase were selected as key predictive factors by all four models. CONCLUSIONS: Using preoperative data, the ML models, especially XGBoost, have the potential to predict the surgical risk of children with PBM and biliary dilatation. The nomogram may provide surgeons early warning to avoid intraoperative iatrogenic injury.


Asunto(s)
Quiste del Colédoco , Mala Unión Pancreaticobiliar , Humanos , Niño , Conductos Pancreáticos/cirugía , Dilatación , Conductos Biliares , Quiste del Colédoco/cirugía , Aprendizaje Automático
16.
Front Pharmacol ; 14: 1097206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874000

RESUMEN

Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.

17.
Pediatr Surg Int ; 39(1): 158, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36959375

RESUMEN

PURPOSE: This study aimed to develop a prediction model to identify risk factors for post-operative acute pancreatitis (POAP) in children with pancreaticobiliary maljunction (PBM) by pre-operative analysis of patient variables. METHODS: Logistic regression (LR), support vector machine (SVM), and extreme gradient boosting (XGBoost) models were established using the prospectively collected databases of patients with PBM undergoing surgery which was reviewed in the period comprised between August 2015 and August 2022, at the Children's Hospital of Soochow University. Primarily, the area beneath the receiver-operating curves (AUC), accuracy, sensitivity, and specificity were used to evaluate the model performance. The model was finally validated using the nomogram and clinical impact curve. RESULTS: In total, 111 children with PBM met the inclusion criteria, and 21 children suffered POAP. In the validation dataset, LR models showed the highest performance. The risk nomogram and clinical effect curve demonstrated that the LR model was highly predictive. CONCLUSION: The prediction model based on the LR with a nomogram could be used to predict the risk of POAP in patients with PBM. Protein plugs, age, white blood cell count, and common bile duct diameter were the most relevant contributing factors to the models.


Asunto(s)
Mala Unión Pancreaticobiliar , Pancreatitis , Humanos , Niño , Pancreatitis/diagnóstico , Pancreatitis/etiología , Pancreatitis/cirugía , Enfermedad Aguda , Estudios Retrospectivos , Aprendizaje Automático
18.
J Magn Reson Imaging ; 58(2): 605-617, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36583731

RESUMEN

BACKGROUND: Preoperative diagnosis of liver fibrosis in children with pancreaticobiliary maljunction (PBM) is needed to guide clinical decision-making and improve patient prognosis. PURPOSE: To develop and validate an MR-based radiomics-clinical nomogram for identifying liver fibrosis in children with PBM. STUDY TYPE: Retrospective. POPULATION: A total of 136 patients with PBM from two centers (center A: 111 patients; center B: 25 patients). Cases from center A were randomly divided into training (74 patients) and internal validation (37 patients) sets. Cases from center B were assigned to the external validation set. Liver fibrosis was determined by histopathological examination. FIELD STRENGTH/SEQUENCE: A 3.0 T (two vendors)/T1-weighted imaging and T2-weighted imaging. ASSESSMENT: Clinical factors associated with liver fibrosis were evaluated. A total of 3562 radiomics features were extracted from segmented liver parenchyma. Maximum relevance minimum redundancy and least absolute shrinkage and selection operator were recruited to screen radiomics features. Based on the selected variables, multivariate logistic regression was used to construct the clinical model, radiomics model, and combined model. The combined model was visualized as a nomogram to show the impact of the radiomics signature and key clinical factors on the individual risk of developing liver fibrosis. STATISTICAL TESTS: Mann-Whitney U and chi-squared tests were used to compare clinical factors. P < 0.05 was considered statistically significant in the final models. RESULTS: Two clinical factors and four radiomics features were selected as they were associated with liver fibrosis in the training (AUC, 0.723, 0.927), internal validation (AUC, 0.718, 0.885), and external validation (AUC, 0.737, 0.865) sets. The radiomics-clinical nomogram yielded the best performance in the training (AUC, 0.977), internal validation (AUC, 0.921), and external validation (AUC, 0.878) sets, with good calibration (P > 0.05). DATA CONCLUSION: Our radiomic-based nomogram is a noninvasive, accurate, and preoperative diagnostic tool that is able to detect liver fibrosis in PBM children. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Mala Unión Pancreaticobiliar , Humanos , Niño , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Nomogramas , Cirrosis Hepática/diagnóstico por imagen
19.
Quant Imaging Med Surg ; 12(11): 5184-5197, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36330191

RESUMEN

Background: Hemodynamic changes after intracranial artery stenosis (ICAS) or occlusion are important causes of metabolic alterations in tissue. This study aimed to explore the feasibility of using amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) to diagnose patients with symptomatic chronic ICAS based on pH variations caused by metabolite damage. Methods: Sixty-seven patients with clinically confirmed unilateral anterior circulation ICAS (≥70% arterial narrowing) and 20 healthy volunteers were recruited for the study. Each patient underwent an MRI examination including a T2 fluid-attenuated inversion recovery (T2-FLAIR) sequence, spin-echo echo-planar diffusion-weighted imaging (DWI), three-dimensional pseudo-continuous arterial spin labeling (pcASL), and an APTw sequence. Areas with abnormal perfusion and APTw effects were defined as perfusion/pH matched areas; areas with abnormal perfusion but normal APTw effects were defined as perfusion/pH unmatched areas; the contralateral mirror areas were defined as the normal areas. Regions of interest (ROIs) were selected within these three areas, and the corresponding apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and magnetization transfer ratio asymmetry (MTRasym) were measured. Results: High intraclass correlation coefficient (ICC) values (0.78≤ ICCs ≤0.97; P<0.05) were observed between the two radiologists who independently performed the data analysis. Significant differences were found in CBF and MTRasym between the perfusion/pH matched, perfusion/pH unmatched, and normal areas [F(2,64)=288.5, 163.5; both P<0.05], but the ADC values were comparable between the three [F(2,64)=2.11; P>0.05]. Spearman correlation analysis revealed no significant correlation between changes in MTRasym and CBF (P>0.05). Finally, APTw showed a robust performance in diagnosing symptomatic chronic ICAS, with an area under the receiver operating characteristic curve (ROC) of 0.953 (sensitivity 97.01%; specificity 85.07%; cut-off value 1.005%). Conclusions: The present study has demonstrated that metabolic alterations are present in patients with symptomatic chronic ICAS. Our findings illustrate that APTw imaging could potentially serve as an effective method to provide a robust clinical diagnosis for patients with symptomatic chronic ICAS.

20.
Front Pharmacol ; 13: 966786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052119

RESUMEN

Sirtuins, as regulators of metabolism and energy, have been found to play an important role in health and disease. Sirt1, the most widely studied member of the sirtuin family, can ameliorate oxidative stress, immune inflammation, autophagy, and mitochondrial homeostasis by deacetylating regulatory histone and nonhistone proteins. Notably, sirt1 has gradually gained attention in kidney disease research. Therefore, an evaluation of the overall distribution of publications concerning sirt1 based on bibliometric analysis methods to understand the thematic evolution and emerging research trends is necessary to discover topics with potential implications for kidney disease research. We conducted a bibliometric analysis of publications derived from the Web of Science Core Collection and found that publications concerning sirt1 have grown dramatically over the past 2 decades, especially in the past 5 years. Among these, the proportion of publications regarding kidney diseases have increased annually. China and the United States are major contributors to the study of sirt1, and Japanese researchers have made important contributions to the study of sirt1 in kidney disease. Obesity, and Alzheimer's disease are hotspots diseases for the study of sirt1, while diabetic nephropathy is regarded as a research hotspot in the study of sirt1 in kidney disease. NAD+, oxidative stress, and p53 are the focus of the sirt1 research field. Autophagy and NLRP3 inflammasome are emerging research trends have gradually attracted the interest of scholars in sirt1, as well as in kidney disease. Notably, we also identified several potential research topics that may link sirt1 and kidney disease, which require further study, including immune function, metabolic reprogramming, and fecal microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...