Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(47): 31581-31591, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29170768

RESUMEN

We performed femtosecond transient absorption (TA) experiments to monitor the solvation dynamics of charge-transfer-to-solvent (CTTS) electrons originating from UV photoexcitation of ammoniated iodide in close proximity to the counterions. Solutions of KI were prepared in liquid ammonia and TA experiments were carried out at different temperatures and densities, along the liquid-gas coexistence curve of the fluid. The results complement previous femtosecond TA work by P. Vöhringer's group in neat ammonia via multiphoton ionization. The dynamics of CTTS-detached electrons in ammonia was found to be strongly affected by ion pairing. Geminate recombination time constants as well as escape probabilities were determined from the measured temporal profiles and analysed as a function of the medium density. A fast unresolved (τ < 250 fs) increase of absorption related to the creation/thermalization of solvated electron species was followed by two decay components: one with a characteristic time around 10 ps, and a slower one that remains active for hundreds of picoseconds. While the first process is attributed to an early recombination of (I, e-) pairs, the second decay and its asymptote reflects the effect of the K+ counterion on the geminate recombination dynamics, rate and yield. The cation basically acts as an electron anchor that restricts the ejection distance, leading to solvent-separated counterion-electron species. The formation of (K+, NH3, e-) pairs close to the parent iodine atom brings the electron escape probability to very low values. Transient spectra of the electron species have also been estimated as a function of time by probing the temporal profiles at different wavelengths.

2.
J Chem Phys ; 133(12): 124313, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20886938

RESUMEN

Lifetimes of the first electronic excited state (S(1)) of fluorine and methyl (o-, m-, and p-) substituted phenols and their complexes with one ammonia molecule have been measured for the 0(0) transition and for the intermolecular stretching σ(1) levels in complexes using picosecond pump-probe spectroscopy. Excitation energies to the S(1) (ππ*) and S(2) (πσ*) states are obtained by quantum chemical calculations at the MP2 and CC2 level using the aug-cc-pVDZ basis set for the ground-state and the S(1) optimized geometries. The observed lifetimes and the energy gaps between the ππ* and πσ* states show a good correlation, the lifetime being shorter for a smaller energy gap. This propensity suggests that the major dynamics in the excited state concerns an excited state hydrogen detachment or transfer (ESHD/T) promoted directly by a S(1)/S(2) conical intersection, rather than via internal conversion to the ground-state. A specific shortening of lifetime is found in the o-fluorophenol-ammonia complex and explained in terms of the vibronic coupling between the ππ* and πσ* states occurring through the out-of-plane distortion of the C-F bond.

3.
J Chem Phys ; 126(17): 174504, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17492871

RESUMEN

Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the NH3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+I- ion pair, because in this case a tight solvation structure, formed by four NH3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA