Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 667, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253560

RESUMEN

Polycomb Repressive Complexes (PRCs) control gene expression through the incorporation of H2Aub and H3K27me3. In recent years, there is increasing evidence of the complexity of PRCs' interaction networks and the interplay of these interactors with PRCs in epigenome reshaping, which is fundamental to understand gene regulatory mechanisms. Here, we identified UBIQUITIN SPECIFIC PROTEASE 5 (UBP5) as a chromatin player able to counteract the deposition of the two PRCs' epigenetic hallmarks in Arabidopsis thaliana. We demonstrated that UBP5 is a plant developmental regulator based on functional analyses of ubp5-CRISPR Cas9 mutant plants. UBP5 promotes H2A monoubiquitination erasure, leading to transcriptional de-repression. Furthermore, preferential association of UBP5 at PRC2 recruiting motifs and local H3K27me3 gaining in ubp5 mutant plants suggest the existence of functional interplays between UBP5 and PRC2 in regulating epigenome dynamics. In summary, acting as an antagonist of the pivotal epigenetic repressive marks H2Aub and H3K27me3, UBP5 provides novel insights to disentangle the complex regulation of PRCs' activities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas del Grupo Polycomb , Proteasas Ubiquitina-Específicas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Cromatina , Enzimas Desubicuitinizantes , Histonas/genética , Proteínas del Grupo Polycomb/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Nat Genet ; 49(10): 1416-1417, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28951627

RESUMEN

Regulation of epigenetic factors through their recruitment to specific genomic regions is still poorly understood. A recent study demonstrates a global mechanism of tethering Polycomb group (PcG) proteins through sequence-specific DNA-binding factors.


Asunto(s)
Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , ADN , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Silenciador del Gen , Proteínas Represoras/genética
3.
Front Plant Sci ; 8: 2274, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29387079

RESUMEN

Selective degradation of proteins in the cell occurs through ubiquitination, which consists of post-translational deposition of ubiquitin on proteins to target them for degradation by proteases. However, ubiquitination does not only impact on protein stability, but promotes changes in their functions. Whereas the deposition of ubiquitin has been amply studied and discussed, the antagonistic activity, deubiquitination, is just emerging and the full model and players involved in this mechanism are far from being completely understood. Nevertheless, it is the dynamic balance between ubiquitination and deubiquitination that is essential for the development and homeostasis of organisms. In this review, we present a detailed analysis of the members of the deubiquitinase (DUB) superfamily in plants and its division in different clades. We describe current knowledge in the molecular and functional characterisation of DUB proteins, focusing primarily on Arabidopsis thaliana. In addition, the striking function of the duality between ubiquitination and deubiquitination in the control of gene expression through the modification of chromatin is discussed and, using the available information of the activities of the DUB superfamily in yeast and animals as scaffold, we propose possible scenarios for the role of these proteins in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...