Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(16): 160801, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154657

RESUMEN

In this Letter, we show that by combining quantum metrology and networking tools, it is possible to extend the baseline of an interferometric optical telescope and thus improve diffraction-limited imaging of point source positions. The quantum interferometer is based on single-photon sources, linear optical circuits, and efficient photon number counters. Surprisingly, with thermal (stellar) sources of low photon number per mode and high transmission losses across the baseline, the detected photon probability distribution still retains a large amount of Fisher information about the source position, allowing for a significant improvement in the resolution of positioning point sources, on the order of 10 µas. Our proposal can be implemented with current technology. In particular, our proposal does not require experimental optical quantum memories.

2.
Entropy (Basel) ; 25(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36981388

RESUMEN

We make use of the powerful formalism of quantum parameter estimation to assess the characteristic rates of a continuous spontaneous localization (CSL) model affecting the motion of a massive mechanical system. We show that a study performed in non-equilibrium conditions unveils the advantages provided by the use of genuinely quantum resources-such as quantum correlations-in estimating the CSL-induced diffusion rate. In stationary conditions, instead, the gap between quantum performance and a classical scheme disappears. Our investigation contributes to the ongoing effort aimed at identifying suitable conditions for the experimental assessment of collapse models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA