Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 798, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179969

RESUMEN

BACKGROUND: In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS: Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS: These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.


Asunto(s)
Cinamatos , Depsidos , Ácido Rosmarínico , Tolerancia a la Sal , Salvia officinalis , Transducción de Señal , Salvia officinalis/metabolismo , Salvia officinalis/fisiología , Salvia officinalis/efectos de los fármacos , Salvia officinalis/genética , Depsidos/metabolismo , Cinamatos/metabolismo , Abietanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Rayos Láser , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas
2.
Protoplasma ; 260(1): 103-116, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35471709

RESUMEN

In the current study the role of H2O2 in He-Ne laser-induced effects on seed germination and post-germinative performance of Salvia officinalis seedlings was assessed under both non-stress and saline conditions. Salinity had adverse impacts on seed germination and root length and decreased seed germination tolerance index. Seed priming with H2O2 and He-Ne laser impacted the seed germination and vigoration in a dose-dependent manner. The optimal effects were gathered by energy dose of 6 J/cm2 laser and concentration of 5 mM H2O2. These pre-treatments enhanced seed germination due to increasing contents of total soluble and reducing sugars and the amylase activity in seeds and improved seedling performance under saline and non-saline conditions. Furthermore, Phy B transcripts were upregulated, salt-accrued oxidative stress was mitigated, and the activities of POD and CAT increased in seedlings primed with H2O2 and laser. Interestingly, applying diphenyleneiodonium (DPI as an inhibitor of NADPH oxidase activity) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) arrested the upregulation of phy B gene and abolished stimulatory impact of laser priming on the aforementioned attributes under both non-stress and saline conditions. These novel findings suggest that H2O2 as a downstream signal modulates the impacts of He-Ne laser on seed germination, seedling performance and salt acclimation in sage seedlings, and likely phy B also is involved in these responses.


Asunto(s)
Fitocromo , Salvia officinalis , Germinación , Peróxido de Hidrógeno/farmacología , Rayos Láser , Tolerancia a la Sal , Plantones , Semillas , Helio , Neón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA