Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 350(1): 136-44, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22209745

RESUMEN

Serotonin and insulin are key regulators of homeostatic mechanisms in the hypothalamus. However, in type 2 diabetes, the hypothalamic responsiveness to serotonin is not clearly established. We used a diabetic model, the Goto Kakizaki (GK) rats, to explore insulin receptor expression, insulin and serotonin efficiency in the hypothalamus and liver by means of Akt phosphorylation. Insulin or dexfenfluramine (stimulator of serotonin) treatment induced Akt phosphorylation in Wistar rats but not in GK rats that exhibit down-regulated insulin receptor. Studies in a neuroblastoma cell line showed that serotonin-induced Akt phosphorylation is PI3-kinase dependent. Finally, in response to food intake, hypothalamic serotonin release was reduced in GK rats, indicating impaired responsiveness of this neurotransmitter. In conclusion, hypothalamic serotonin as insulin efficiency is impaired in diabetic GK rats. The insulin-serotonin cross-talk and impairment observed is one potential key modification in the brain during the onset of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Insulina/sangre , Receptor Cross-Talk , Serotonina/sangre , Animales , Glucemia , Línea Celular Tumoral , Dexfenfluramina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos , Humanos , Hipotálamo/enzimología , Hipotálamo/metabolismo , Insulina/farmacología , Insulina/fisiología , Leptina/sangre , Hígado/enzimología , Hígado/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Periodo Posprandial , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/metabolismo , Serotonina/farmacología , Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología
2.
Neuroendocrinology ; 92(4): 235-45, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20975259

RESUMEN

BACKGROUND/AIMS: Studies conducted in adult rats have shown that increased fat intake affects brain energy homeostasis and stress response. The neuroendocrine circuits controlling the aforementioned functions continue to mature during puberty. The aim of the present study was to investigate whether post-weaning high-fat consumption can modify the endocrine responses of pubertal rats to an acute stress. METHODS: Weaning male and female Wistar rats on postnatal day (P) 22 were fed either a high-fat (HF; 45% calories from fat) or a control (10% calories from fat) diet and were sacrificed on the individual day of puberty onset (between P35 and P42) under basal conditions or 4 h after swimming stress. Plasma insulin, leptin and corticosterone levels were determined by radioimmunoassay and the respective receptors in the hypothalamus and hippocampus were determined by Western blot analysis. RESULTS: Stressed HF-fed males showed a smaller increase in plasma insulin levels than chow-fed males. Their leptin receptor levels were reduced in the hypothalamus, but not in the hippocampus, and their glucocorticoid receptor levels were increased in the hypothalamus compared to stressed chow-fed males. HF-fed females were nonresponsive to stress-induced alterations in plasma glucose and corticosterone levels, as well as to hippocampal insulin receptors following stress. Several sex differences were also revealed in the endocrine responses of HF-fed animals following stress. CONCLUSIONS: These data show that consumption of high-fat foods during preadolescence can modify the endocrine responses to an acute stress by affecting both stress and metabolic mediators in a sexually dimorphic manner.


Asunto(s)
Grasas de la Dieta/farmacología , Sistema Endocrino/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Psicológico/metabolismo , Animales , Corticosterona/metabolismo , Dieta Aterogénica , Sistema Endocrino/metabolismo , Conducta Alimentaria/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratas , Ratas Wistar , Caracteres Sexuales , Maduración Sexual/fisiología
3.
Behav Brain Res ; 209(1): 114-8, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20097234

RESUMEN

The present study sought to examine whether repeated administration of the CB(1) receptor agonist WIN55,212-2 affected intracranial self-stimulation (ICSS) behavior and induced phenomena of tolerance or sensitization, similar to typical addictive drugs. Rats received intraperitoneal injections of vehicle for 5 days, vehicle or WIN55,212-2 (0.1, 0.3 or 1mg/kg) for 20 subsequent days, and vehicle for 5 additional days. Thresholds for ICSS were measured before and after each injection. The initial five injections of vehicle did not affect ICSS thresholds. WIN55,212-2 (1mg/kg) significantly increased ICSS thresholds from the first day of administration, an effect that remained stable across the subsequent days of administration. During the 5 additional days, where WIN55,212-2 was substituted with vehicle, rats demonstrated a conditioned increase in postinjection thresholds that was significant the first 3 days of this period. These findings indicate that repeated WIN55,212-2 administration elicited a sustained increase in ICSS, i.e., phenomena of tolerance or sensitization were not observed. The present data demonstrate cannabinoid-predictive stimuli that may gain affective salience and play an important role in maintaining cannabinoid administration.


Asunto(s)
Benzoxazinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Condicionamiento Operante/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Autoestimulación/efectos de los fármacos , Autoestimulación/fisiología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Biofisica/métodos , Estimulación Eléctrica/métodos , Masculino , Haz Prosencefálico Medial/fisiología , Ratas , Ratas Sprague-Dawley , Umbral Sensorial/efectos de los fármacos
4.
Cell Mol Neurobiol ; 29(2): 157-68, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18773289

RESUMEN

Early changes in neuroendocrine pathways are essential in the development of metabolic pathologies. Thus, it is important to have a better understanding of the signals involved in their initiation. Long-term consumption of high-fat diets induces insulin resistance, obesity, diabetes. Here, we have investigated early neural and endocrine events in the hypothalamus and hippocampus induced by a short-term high fat, low carbohydrate diet in adult male Wistar rats. The release of serotonin, which is closely associated with the actions of insulin and leptin, was measured, by electrochemical detection following reverse-phase liquid chromatography (HPLC), in the extracellular space of the medial hypothalamus and the dorsal hippocampus in samples obtained from non-anesthetized animals, by microdialysis. The high-fat diet had a specific effect on the hypothalamus. Serotonin release induced by food intake was reduced after 1 week, and effectively ceased after 6 weeks of the diet. After 1 week, there was an increased gene expression of the insulin receptor and the insulin receptor substrates IRS1 and IRS2, as measured by real-time PCR. After 6 weeks of diet, insulin gene expression increased. Leptinemia increased in all cases. This new data support the concept that high-fat diets, in addition to have peripheral effects, cause a rapid alteration in specific central mechanisms involved in energy and glucose homeostasis. The changes in the gene expression of insulin and signaling elements represent possible adaptations aimed at counterbalancing the reduced responsiveness of the serotonergic system to nutritional signals and maintaining homeostasis.


Asunto(s)
Encéfalo/metabolismo , Grasas de la Dieta/efectos adversos , Insulina/metabolismo , Enfermedades Metabólicas/metabolismo , Sistemas Neurosecretores/metabolismo , Serotonina/metabolismo , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Glucosa/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Homeostasis/fisiología , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Enfermedades Metabólicas/fisiopatología , Sistemas Neurosecretores/fisiopatología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA