Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35161285

RESUMEN

Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.

2.
Front Plant Sci ; 12: 728516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512704

RESUMEN

CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications.

3.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578757

RESUMEN

We present a reproducible procedure for transforming somatic embryos of cork oak with the CsTL1 gene that codes for a thaumatin-like protein, in order to confer tolerance to Phytophthora cinnamomi. Different concentrations/combinations of the antibiotics carbenicillin and cefotaxime, as bacteriostatic agents, and kanamycin, as a selective agent, were tested. A lethal dose of 125 mg/L kanamycin was employed to select transgenic somatic embryos, and carbenicillin was used as a bacteriostatic agent at a concentration of 300 mg/L, which does not inhibit somatic embryo proliferation. The transformation efficiency was clearly genotype-dependent and was higher for the TGR3 genotype (17%) than for ALM80 (4.5%) and ALM6 (2%). Insertion of the transgenes in genomic DNA was confirmed by PCR analysis, whereas expression of the CsTL1 gene was evaluated by semi-quantitative real-time PCR (qPCR) analysis. A vitrification treatment successfully cryopreserved the transgenic lines generated. The antifungal activity of the thaumatin-like protein expressed by the gene CsTL1 was evaluated in an in vitro bioassay with the oomycete P. cinnamomi. Of the eight transgenic lines analyzed, seven survived for between one or two times longer than non-transgenic plantlets. Expression of the CsTL1 gene and plantlet survival days were correlated, and survival was generally greater in plantlets that strongly expressed the CsTL1 gene.


Asunto(s)
Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/embriología , Quercus/embriología , Agrobacterium tumefaciens/genética , Resistencia a la Enfermedad , Phytophthora/fisiología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Quercus/genética , Quercus/parasitología , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA