Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607160

RESUMEN

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Asunto(s)
Dióxido de Carbono , Ecosistema , Biomasa , Cambio Climático , Clima , Suelo
2.
Environ Entomol ; 52(1): 56-66, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36377306

RESUMEN

Hylurgus ligniperda (F.) and Hylastes ater (Paykull) are secondary bark beetles that have successfully spread beyond their native range, particularly into Pinus spp. plantations in the Southern Hemisphere. They feed on the phloem and cambial regions of highly stressed and recently dead Pinus spp. Here H. ligniperda and H. ater egg, larval, and pupal survival and development rates were modeled. Survival was variably influenced by temperatures depending on the life stage, but general trends were for H. ligniperda to tolerate warmer temperatures in comparison to H. ater. Nonlinear models showed 26, 29, and 34°C are the optimal temperature (maximum development rates) for the development of eggs, larvae, and pupae of H. ligniperda. In contrast, optimal temperature predictions were lower for H. ater, with estimates of 26, 22, and 23°C for the development of eggs, larvae, and pupae, respectively. H. ligniperda pre-imaginal stages were more tolerant to high temperatures, and H. ater pre-imaginal stages were more tolerant to low temperatures. Understanding the thermal requirements and limits for development for these two pests can assist in modeling emergence times, their current and potential species distribution and have potential phytosanitary applications.


Asunto(s)
Escarabajos , Pinus , Gorgojos , Animales , Temperatura , Corteza de la Planta , Larva
3.
Front Plant Sci ; 13: 892826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712598

RESUMEN

Common myrtle (Myrtus communis L.) occurs in (semi-)arid areas of the Palearctic region where climate change, over-exploitation, and habitat destruction imperil its existence. The evergreen shrub is of great economic and ecological importance due to its pharmaceutical value, ornamental use, and its role in urban greening and habitat restoration initiatives. Under greenhouse conditions, we investigated the effect of soil inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on biomass allocation, water relations, and nutritional status of drought-stressed myrtle seedlings. Single and dual AMF (Funneliformis mosseae and Rhizophagus irregularis) and PGPR (Pseudomonas fluorescens and P. putida) soil inoculations were applied to myrtle seedlings growing under different soil water regimes (100, 60, and 30% of field capacity) for 6 months using a full factorial, completely randomized design. AMF and PGPR treatments, especially dual inoculations, alleviated negative drought effects on biomass and morpho-physiological traits, except for water-use efficiency, which peaked under severe drought conditions. Under the greatest soil water deficit, dual inoculations promoted leaf biomass (104%-108%), root biomass (56%-73%), mesophyll conductance (58%), and relative water content (1.4-fold) compared to non-inoculated controls. Particularly, dual AMF and PGPR inoculations stimulated nutrient dynamics in roots (N: 138%-151%, P: 176%-181%, K: 112%-114%, Ca: 124%-136%, and Mg: 130%-140%) and leaves (N: 101%-107%, P: 143%-149%, K: 83%-84%, Ca: 98%-107%, and Mg: 102%-106%). Our findings highlight soil inoculations with beneficial microbes as a cost-effective way to produce highly drought resistant seedling stock which is vital for restoring natural myrtle habitats and for future-proofing myrtle crop systems.

4.
Tree Physiol ; 41(11): 2034-2045, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960386

RESUMEN

Seedlings of New Zealand's treeline-forming Fuscospora cliffortioides (Hook.f.) perform poorly beyond the established canopy, limiting treeline advance. To test the long-standing assumption that photoinhibition impairs regeneration in the subalpine belt of New Zealand's Southern Alps, we assessed photosystem II (PSII) performance of seedling-sized individuals and microclimate variation. We performed diurnal, non-invasive chlorophyll-a-fluorescence measurements on exposed and canopy-sheltered individuals at two sites in New Zealand's Southern Alps during summer and winter. Diurnal recordings of the effective (ΦPSII) and optimal (Fv/Fm) photosynthetic quantum yield were supplemented with light response curves and micro-temperature recordings. ΦPSII returned to near-optimal values around 0.8 after 30 min of shading, which rules out accumulative or long-term photoinhibition effects. The maximum electron transport rate derived from rapid light curves was significantly higher (+12%) in exposed compared with canopy-shaded individuals. Summer temperature fluctuated widely on the scree (-0.5 to 60.5 °C) and near seedlings (-2 to 26.5 °C). Our results revealed a remarkable level of light adaptation and contradict previous studies hinting at high light-induced photoinhibition as a treeline-limiting factor in the Southern Alps. By linking low ΦPSII on winter mornings, and large, sudden temperature drops in summer, we suspect that cold-induced photoinhibition might occur but the rapid recovery of ΦPSII seen across a wide temperature range makes lethal photo-oxidative damage rather unlikely. Given the demonstrably low summer frost tolerance of F. cliffortioides, cold-related damage resulting from frost events during the growing season or embolism induced by frost drought may offer more plausible explanations for the poor seedling establishment. Duration and frequency of these events could diminish with global warming, which may promote treeline advance.


Asunto(s)
Clorofila , Plantones , Clorofila A , Nueva Zelanda , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II , Plantones/fisiología
5.
Pediatr Phys Ther ; 32(3): 226-233, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32604366

RESUMEN

PURPOSE: We investigated the feasibility of the Actiheart monitor to determine total daily energy expenditure and the validity of the Actiheart step test as an accurate estimate of peak oxygen uptake. METHODS: (Equation is included in full-text article.)O2 peak was estimated with the Actiheart step test and compared with a cardiopulmonary exercise test. Total daily energy expenditure was measured using the Actiheart monitor on days with and without classmate coadmission. RESULTS: Of 26 eligible measurement periods (15 children), 89% participated and 91% could participate safely; however, 35% fulfilled demands for valid monitoring. The percentage of children not completing the monitoring period was 10% (attrition) and adherence to classmate visits was 84%. Forty-eight percent of the measurement periods provided data, and only 27% was calibrated data. Actiheart step test significantly overestimated (Equation is included in full-text article.)O2 peak compared with the Cardio Pulmonary Exercise Test. CONCLUSION: Measuring total daily energy expenditure using Actiheart is not feasible, nor implementable in children with cancer. Furthermore, the Actiheart step test is not a valid test to estimate (Equation is included in full-text article.)O2 peak in children with cancer.


Asunto(s)
Prueba de Esfuerzo/métodos , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico/métodos , Neoplasias/fisiopatología , Consumo de Oxígeno/fisiología , Estudiantes/estadística & datos numéricos , Adolescente , Niño , Dinamarca , Estudios de Factibilidad , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
6.
Plant Dis ; 103(8): 1828-1834, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31184971

RESUMEN

Red needle cast is a significant foliar disease of commercial stands of Pinus radiata caused by Phytophthora pluvialis in New Zealand. The effect of copper, applied as a foliar spray of cuprous oxide at a range of doses between 0 and 1.72 kg ha-1, was investigated in two controlled trials with potted plants and in an operational trial with mature P. radiata. In all trials, lesions formed on needles after artificial exposure to the infecting propagules (zoospores) of P. pluvialis were used to determine treatment efficacy, with the number and/or length of lesions as the dependent variable. Results across all trials indicated that cuprous oxide was highly effective at reducing infection of P. radiata with P. pluvialis. Application rates equivalent to ≥0.65 kg ha-1 significantly reduced infection levels relative to a control treatment, with foliar surface copper levels as low as 13 to 26 mg kg-1 of needle tissue preventing infection. Greater copper content was associated with a reduction in the proportion of needles with P. pluvialis lesions, with the probability of lesions developing decreasing approximately 1% for every 1 unit (in milligrams per kilogram) increase in copper content. Over a 90-day period, surface copper content declined to 30% of that originally applied, indicating an approximate period of treatment efficacy of 3 months. Our findings highlight the potential of cuprous oxide for the control of red needle cast in P. radiata stands. Further information about the optimal field dose, timing, and the frequency of foliar cuprous oxide application is key to prevent infection and also reduce the build up of inoculum during severe outbreaks of this pathogen.


Asunto(s)
Cobre , Phytophthora , Pinus , Enfermedades de las Plantas , Antiparasitarios/farmacología , Cobre/análisis , Cobre/farmacología , Nueva Zelanda , Phytophthora/efectos de los fármacos , Phytophthora/fisiología , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control
7.
Pediatr Blood Cancer ; 65(8): e27100, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29741279

RESUMEN

BACKGROUND: The physical function of children with cancer is reduced during treatment, which can compromise the quality of life and increase the risk of chronic medical conditions. The study, "REhabilitation, including Social and Physical activity and Education in Children and Teenagers with cancer" (Clinicaltrials.gov: NCT01772862) examines the efficacy of multimodal rehabilitation strategies introduced at cancer diagnosis. This article addresses the feasibility of and obstacles to testing physical function in children with cancer. METHODS: The intervention group comprised 46 males and 29 females aged 6-18 years (mean ± SD: 11.3 ± 3.1 years) diagnosed with cancer from January 2013 to April 2016. Testing at diagnosis and after 3 months included timed-up-and-go, sit-to-stand, flamingo balance, handgrip strength, and the bicycle ergometer cardiopulmonary exercise test (CPET). RESULTS: Of the 75 children, 92% completed a minimum of one test; two children declined testing and four were later included. Completion was low for CPET (38/150, 25%) but was high for handgrip strength (122/150, 81%). Tumor location, treatment-related side effects, and proximity to chemotherapy administration were primary obstacles for testing physical function. Children with extracranial solid tumors and central nervous system tumors completed significantly fewer tests than those with leukemia and lymphoma. Children with leukemia demonstrated reduced lower extremity function, that is, 24% reduction at 3 months testing in timed-up-and-go (P = 0.005) and sit-to-stand (P = 0.002), in contrast with no reductions observed in the other diagnostic groups. CONCLUSION: Children with cancer are generally motivated to participate in physical function tests. Future studies should address diagnosis specific obstacles and design testing modalities that facilitate physical function tests in this target group.


Asunto(s)
Neoplasias/rehabilitación , Aptitud Física , Modalidades de Fisioterapia , Adolescente , Niño , Estudios de Factibilidad , Femenino , Humanos , Masculino
8.
Front Plant Sci ; 8: 249, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326088

RESUMEN

Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming.

9.
J Chem Ecol ; 43(1): 17-25, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27832345

RESUMEN

Plant-feeding insects use visual and olfactory cues (shape, color, plant volatiles) for host location, but the relative importance of different cues and interactions with non-host-plant volatiles in ecosystems of varying plant biodiversity is unclear for most species. We studied invasive bark beetles and wood borers associated with pine trees to characterize interactions among color, host and non-host volatiles, by employing traps that mimic tree trunks. Cross-vane flight intercept traps (black, green, red, white, yellow, clear) and black funnel traps were used with and without attractants (α-pinene + ethanol), repellents (non-host green leaf volatiles, 'GLV'), and attractant/repellent combinations in four pine forests in New Zealand. We trapped 274,594 Hylurgus ligniperda, 7842 Hylastes ater, and 16,301 Arhopalus ferus. Trap color, attractant, and color × attractant effects were highly significant. Overall, black and red traps had the highest catches, irrespective of the presence of attractants. Alpha-pinene plus ethanol increased trap catch of H. ligniperda 200-fold but only 6-fold for H. ater and 2-fold for A. ferus. Green leaf volatiles had a substantial repellent effect on trap catch of H. ligniperda but less on H. ater and A. ferus. Attack by H. ligniperda was halved when logs were treated with GLV, and a similar effect was observed when logs were placed among broadleaved understory shrubs emitting GLV. Overall, H. ligniperda was most strongly affected by the olfactory cues used, whereas H. ater and A. ferus were more strongly affected by visual cues. Collectively, the results support the semiochemical diversity hypothesis, indicating that non-host plant volatiles from diverse plant communities or artificial dispensers can contribute to resistance against herbivores by partly disrupting host location.


Asunto(s)
Escarabajos/fisiología , Dípteros/fisiología , Conducta Alimentaria , Interacciones Huésped-Parásitos , Pinus/química , Pinus/parasitología , Animales , Monoterpenos Bicíclicos , Color , Señales (Psicología) , Etanol , Especies Introducidas , Monoterpenos , Odorantes , Feromonas , Percepción Visual
10.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26391334

RESUMEN

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Asunto(s)
Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Isótopos de Carbono/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Estomas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA