RESUMEN
Quinclorac and tebuthiuron are residual herbicides that may remain in the soil longer than for the cropping season. The objective of this research was to evaluate the use of green manure plants to remediate soils treated with quinclorac and tebuthiuron. Soils were separately treated with 14C-quinclorac and 14C-tebuthiuron at 266.4 and 132 g ha-1, respectively. After 21 days, four green manure plants, namely Crotalaria spectabilis, Canavalia ensiformis, Stizolobium aterrimum, and Lupinus albus, were separately sown in the treated soils. Overall, all four species absorbed more 14C-tebuthiuron [C. ensiformes (22.49%), S. aterrimum (16.71%), L. albus (15%), and C. spectabilis (4.48%)] than 14C-quinclorac [C. ensiformis (13.44%), L. albus (10.02%), S. aterrimum (6.2%), and C. spectabilis (1.75%)]. Quinclorac translocation in all four plants was greater in young leaves compared to old leaves, cotyledons, or roots, and 14C-tebuthiuron translocation in all four plant species was greater in old leaves and cotyledons compared to young leaves or roots. Regardless of the differences in translocation between the two herbicides, the four green manure plants are capable to remediate soils that have been treated with quinclorac and tebuthiuron. However, C. ensiformis is more efficient for the remediation of tebuthiuron-treated soil compared to the other plants.
Asunto(s)
Herbicidas , Contaminantes del Suelo , Biodegradación Ambiental , Estiércol , Compuestos de Metilurea , Quinolinas , Suelo , Contaminantes del Suelo/análisisRESUMEN
The effects of mesotrione, S-metolachlor, and terbuthylazine, applied in mixture, on soil biodegradation remain insufficiently researched. However, herbicide mixtures have been a common practice in agricultural systems in the last years. Understanding the fate of soil-applied herbicides may help on planning weed management tactics towards more sustainable and efficient weed control. Therefore, this study evaluated the fate of mesotrione alone and in mixture with S-metolachlor and terbuthylazine when applied to two contrasting arable Brazilian soils. Mineralization and degradation experiments were conducted using 14C-mesotrione alone or in mixture. From the 49-day laboratory incubation data, increased mineralization half-life of mesotrione was observed for the mixture of herbicides, ranging from a 4-day increase for the sandy loam soil to a 1-day increase in the sandy clay texture soils. Mesotrione degradation rate had a twofold increase in the sandy loam compared to the sandy clay soil. Two metabolites can be identified from mesotrione degradation, 4-methyl-sulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4-methylsulfonyl benzoic acid (AMBA). Indices for the score of ubiquity in groundwater indicated mesotrione possesses leaching potential for both soils. Applying mesotrione alone or in mixture did not influence the amount of bound residues from mesotrione. However, mesotrione degradation rate was influenced by soil texture regardless if applied alone or in mixture. Mesotrione biotransformation was relatively quick, indicating that this herbicide has low persistence and, consequently, low residual effect on crops and weeds when present in similar soils to this present study.
Asunto(s)
Ciclohexanonas/análisis , Herbicidas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Acetamidas/análisis , Biodegradación Ambiental , Brasil , Productos Agrícolas , Semivida , Triazinas/análisisRESUMEN
Knowledge of the effects of seed burial depth and the presence of straw on the soil surface on weed seedling emergence provides useful information for the development of weed management tactics. Buttonweed (Borreria densiflora DC.) is a troublesome weed that occurs in large infestations in soybean and sugarcane crops from north-central Brazil. This study investigated buttonweed emergence at different seed burial depths and straw amounts present on the soil surface. The experiment was conducted in greenhouse conditions, under a factorial design between four seed burial depths and four amounts of surface straw. Percent seedling emergence and fresh biomass (g) were evaluated at twenty-five days after installation (DAI). Greater buttonweed emergence occurred in seeds that were placed on the soil surface either without surface straw or with up to 1,000 kg ha1 of straw on the soil surface. With 4,000 kg ha1 of surface straw, buttonweed emergence was prevented when seeds were placed at a depth of 0.5 cm or deeper in the soil. These data indicated emergence of this weed species was greater at depths near the soil surface and in soils with the least amounts of surface straw. Information generated in this study provides a starting point for the development of knowledge for understanding the biology of buttonweed emergence and its population dynamics. Such information may be directly transmitted to growers and lays the groundwork for an integrated management approach for this weed species.
Asunto(s)
Control de Malezas/tendencias , Rubiaceae/anatomía & histología , Rubiaceae/crecimiento & desarrolloRESUMEN
Knowledge of the effects of seed burial depth and the presence of straw on the soil surface on weed seedling emergence provides useful information for the development of weed management tactics. Buttonweed (Borreria densiflora DC.) is a troublesome weed that occurs in large infestations in soybean and sugarcane crops from north-central Brazil. This study investigated buttonweed emergence at different seed burial depths and straw amounts present on the soil surface. The experiment was conducted in greenhouse conditions, under a factorial design between four seed burial depths and four amounts of surface straw. Percent seedling emergence and fresh biomass (g) were evaluated at twenty-five days after installation (DAI). Greater buttonweed emergence occurred in seeds that were placed on the soil surface either without surface straw or with up to 1,000 kg ha1 of straw on the soil surface. With 4,000 kg ha1 of surface straw, buttonweed emergence was prevented when seeds were placed at a depth of 0.5 cm or deeper in the soil. These data indicated emergence of this weed species was greater at depths near the soil surface and in soils with the least amounts of surface straw. Information generated in this study provides a starting point for the development of knowledge for understanding the biology of buttonweed emergence and its population dynamics. Such information may be directly transmitted to growers and lays the groundwork for an integrated management approach for this weed species.(AU)