Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Pollut ; 361: 124870, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218201

RESUMEN

The exposure and health implications of exhaled aerosol particles from tobacco products remain a critical area of concern in public health. This research aimed to characterize the cytotoxicity of exhaled aerosol particles from conventional cigarettes (CC) and heated tobacco products (HTP) using a novel "Cells-on-Particles" integrated aerosol sampling and cytotoxicity in vitro testing platform. The research uniquely captures the physical and chemical characteristics of aerosols by depositing them onto fibrous matrixes, enabling a more accurate representation of exposure conditions. New insights were provided into the differences between CC and HTP in terms of particle size distributions, cell viability, metabolic activity, and the expression of genes related to xenobiotic metabolism and oxidative stress. This approach marks a significant advancement in the field by offering a more direct and representative method to evaluate the potential health hazards of tobacco aerosol particles.

2.
J Biomed Mater Res A ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295435

RESUMEN

Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.

3.
Toxicology ; 508: 153936, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216545

RESUMEN

The presented research introduces the "Cells-on-Particles" integrated aerosol sampling and cytotoxicity testing in vitro platform, which allows for the direct assessment of the biological effects of captured aerosol particles on a selected cell type without the need for extraction or resuspension steps. By utilizing particles with unaltered chemical and physical properties, the method enables simple and fast screening of biological effects on specific cell types, making it a promising tool for assessing the cytotoxicity of particulate matter in ambient and occupational air. Platforms fabricated from cellulose acetate (CA) and poly[ε]caprolactone (PCL) were proven to be biocompatible and promoted the attachment and growth of the human bronchial epithelial cell line BEAS-2B. The PCL platforms were exposed to simulated occupational aerosols of silver, copper, and graphene oxide nanoparticles. Each nanoparticle type exhibited different and dose-dependent cytotoxic effects on cells, evidenced by reduced cell viability and distinct, particle type-dependent gene expression patterns. Notably, copper nanoparticles were identified as the most cytotoxic, and graphene oxide the least. Comparing the "Cells-on-Particles" and submerged exposure ("Particles-on-Cells") testing strategies, BEAS-2B cells responded to selected nanoparticles in a comparable manner, suggesting the developed testing system could be proposed for further evaluation with more complex environmental aerosols. Despite limitations, including particle agglomeration and the need for more replicates to address variability, the "Cells-on-Particles" platform enables effective detection of toxicity induced by relatively low levels of nanoparticles, demonstrating good sensitivity and a relatively simpler procedure compared to standard 2D cell exposure methods.


Asunto(s)
Aerosoles , Supervivencia Celular , Pruebas de Toxicidad , Humanos , Supervivencia Celular/efectos de los fármacos , Línea Celular , Pruebas de Toxicidad/métodos , Cobre/toxicidad , Grafito/toxicidad , Nanopartículas del Metal/toxicidad , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Tamaño de la Partícula , Plata/toxicidad , Material Particulado/toxicidad , Poliésteres/toxicidad , Poliésteres/química
4.
Front Bioeng Biotechnol ; 10: 971294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082160

RESUMEN

Polycaprolactone (PCL) has recently received significant attention due to its mechanical strength, low immunogenicity, elasticity, and biodegradability. Therefore, it is perfectly suitable for cartilage tissue engineering. PCL is relatively hydrophobic in nature, so its hydrophilicity needs to be enhanced before its use in scaffolding. In our study, first, we aimed to improve the hydrophilicity properties after the network of the bilayer scaffold was formed by electrospinning. Electrospun bilayer PCL scaffolds were treated with ozone and further loaded with transforming growth factor-beta 3 (TGFß3). In vitro studies were performed to determine the rabbit muscle-derived stem cells' (rMDSCs) potential to differentiate into chondrocytes after the cells were seeded onto the scaffolds. Statistically significant results indicated that ozonated (O) scaffolds create a better environment for rMDSCs because collagen-II (Coll2) concentrations at day 21 were higher than non-ozonated (NO) scaffolds. In in vivo studies, we aimed to determine the cartilage regeneration outcomes by macroscopical and microscopical/histological evaluations at 3- and 6-month time-points. The Oswestry Arthroscopy Score (OAS) was the highest at both mentioned time-points using the scaffold loaded with TGFß3 and rMDSCs. Evaluation of cartilage electromechanical quantitative parameters (QPs) showed significantly better results in cell-treated scaffolds at both 3 and 6 months. Safranin O staining indicated similar results as in macroscopical evaluations-cell-treated scaffolds revealed greater staining with safranin, although an empty defect also showed better results than non-cell-treated scaffolds. The scaffold with chondrocytes represented the best score when the scaffolds were evaluated with the Mankin histological grading scale. However, as in previous in vivo evaluations, cell-treated scaffolds showed better results than non-cell-treated scaffolds. In conclusion, we have investigated that an ozone-treated scaffold containing TGFß3 with rMDSC is a proper combination and could be a promising scaffold for cartilage regeneration.

5.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35746068

RESUMEN

Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL-scaffolds were functionalized with ozone and loaded with TGF-ß3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated ("naïve" (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-ß3 and hMDSC compared to NO and scaffolds without TGF-ß3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-ß3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-ß3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.

6.
Carbohydr Polym ; 285: 119260, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287873

RESUMEN

The importance of the cellulose cycle has been increasing during the last decade along the ambitious targets of bioeconomy, however many novel fabrication processes yet lack of technological robustness. We present the optimization process for the fabrication of cellulose fibrous matrix by wet electrospinning via the controlled removal of the ionic liquids in order to avoid the formation of film-like structures. Fibers were produced on a bespoke wet-type electrospinning rig from cotton cellulose solutions of 3% in different types of ionic liquids (BMIMAc/C10MIMCl/EMIMAc). Three stage elution with a range of elution ratios using deionized water were applied to coagulate cellulose and remove residuals of ionic liquid. A variety of fibrous morphologies has been obtained. In case of a high water/IL ratio, the median fiber width across all ionic liquids was 0.4 µm, with the porosity at 92.3% and the pore diameter at 155 µm. The increasing elution ratio positively affected separate cellulose fiber formation, crystallinity, and mechanical strength of formed structures.

7.
Pharmaceutics ; 13(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34452249

RESUMEN

Ozonation has been proved as a viable surface modification technique providing certain properties to the scaffolds that are essential in tissue engineering. However, the ozone (O3) treatment of PCL scaffolds in aqueous environments has not yet been presented. O3 treatment performed in aqueous environments is more effective compared with traditional, executed in ambient air treatment due to more abundant production of hydroxyl radicals (•OH) within the O3 reaction with water molecules. During interaction with •OH, the scaffold acquires functional groups which improve wettability properties and encapsulate growth factors. In this study, a poly(ε)caprolactone (PCL) scaffold was fabricated using solution electrospinning and was subsequently ozonated in a water reactor. The O3 treatment resulted in the expected occurrence of oxygen-containing functional groups, which improved scaffold wettability by almost 27% and enhanced cell proliferation for up to 14 days. The PCL scaffold was able to withhold 120 min of O3 treatment, maintaining fibrous morphology and mechanical properties.

8.
J Environ Manage ; 298: 113466, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371223

RESUMEN

Novel highly porous nanoparticle materials are increasingly being applied in adsorption processes, but they need to be supported by robust matrixes to maintain their functionality. We present a study of hosting graphene oxide (GO) particles on polyether block amide (PEBA) melt electrospun fibers and applying such composite matrix to the adsorption of the cationic dye (crystal violet) from water. Various amounts of GO (from 0.5 to 2.0%) were mixed into pure PEBA and electrospun by melt electrospinning obtaining micro fibrous matrixes. These were characterized for morphology (SEM), chemical composition (FTIR), crystallinity (XRD), and wetting behavior (WCA). The increasing amount of GO adversely affected fiber diameter (reduced from 13.18 to 4.38 µm), while the hydrophilic properties (Water contact angle decrease from 109 to 76°) and overall dye adsorption was increased. Efficient adsorption has been demonstrated, reaching approximately 100 % removal efficiency using a 2% GO composite matrix at a dose of 40 mg/l and pH of 10. Further increase of GO concentration in polymer is not feasible due to instability in the electrospinning process.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Amidas , Elastómeros , Aguas Residuales
9.
Polymers (Basel) ; 12(4)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260569

RESUMEN

Polyether block amide (PEBA) nanocomposite membranes, including Graphene (GA)/PEBA membranes are considered to be a promising emerging technology for removing CO2 from natural gas and biogas. However, poor dispersion of GA in the produced membranes at industrial scale still forms the main barrier to commercialize. Within this frame, this research aims to develop a new industrial approach to produce GA/PEBA granules that could be used as a feedstock material for mass production of GA/PEBA membranes. The developed approach consists of three sequential phases. The first stage was concentrated on production of GA/PEBA granules using extrusion process (at 170-210 °C, depending on GA concentration) in the presence of Paraffin Liquid (PL) as an adhesive layer (between GA and PEBA) and assisted melting of PEBA. The second phase was devoted to production of GA/PEBA membranes using a solution casting method. The last phase was focused on evaluation of CO2/CH4 selectivity of the fabricated membranes at low and high temperatures (25 and 55 °C) at a constant feeding pressure (2 bar) using a test rig built especially for that purpose. The granules and membranes were prepared with different concentrations of GA in the range 0.05 to 0.5 wt.% and constant amount of PL (2 wt.%). Also, the morphology, physical, chemical, thermal, and mechanical behaviors of the synthesized membranes were analyzed with the help of SEM, TEM, XRD, FTIR, TGA-DTG, and universal testing machine. The results showed that incorporation of GA with PEBA using the developed approach resulted in significant improvements in dispersion, thermal, and mechanical properties (higher elasticity increased by ~10%). Also, ideal CO2/CH4 selectivity was improved by 29% at 25 °C and 32% at 55 °C.

10.
Indoor Air ; 29(4): 686-697, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30921480

RESUMEN

We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2 ), formaldehyde (CH2 O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3 ), whereas significant reductions were seen in fungal (0.6-log reduction in cells/m2 /d) and bacterial (0.6-log reduction in gram-positive and 0.9-log reduction in gram-negative bacterial cells/m2 /d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3 ) after the retrofits. Mechanical ventilation was associated with significantly lower CH2 O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/prevención & control , Conservación de los Recursos Energéticos/métodos , Ventilación , Microbiología del Aire , Polvo/análisis , Ambiente Controlado , Monitoreo del Ambiente , Finlandia , Vivienda , Humanos , Lituania , Ventilación/métodos
11.
Basic Clin Pharmacol Toxicol ; 125(2): 166-177, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30801928

RESUMEN

Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body. Post-translational modification of proteins, for example citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress. In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested. The protective effect of phytocannabinoids was investigated as well. Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice. Pre-treatment with vaporized cannabidiol ameliorated some damaging effects. Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Citrulinación/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Emisiones de Vehículos/toxicidad , Administración por Inhalación , Animales , Cannabinoides/administración & dosificación , Cannabis/química , Modelos Animales de Enfermedad , Humanos , Lesión Pulmonar/diagnóstico , Lesión Pulmonar/prevención & control , Masculino , Ratones , Nebulizadores y Vaporizadores , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Resultado del Tratamiento
12.
Chemosphere ; 223: 474-482, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784754

RESUMEN

Aerosol particle, carbonyl, and nicotine concentrations were analysed as pollutants affecting indoor air quality during the usage of electrically-heated tobacco product - the Tobacco Heating System (THS). Quantitative experimental variables included THS use intensity as number of parallel users (1, 3, or 5), distance to the bystander (0.5, 1, or 2 m), as well as environmental conditions in a chamber: ventilation intensity as air changes per hour (0.2, 0.5, or 1 h-1), and relative humidity (RH, 30, 50 or 70%). The real-time particle number (PNC), CO and CO2 concentration, as well as off-line acetaldehyde, formaldehyde, nicotine, and 3-ethenylpyridine concentration was measured during and after the active usage. Use of THS resulted in a statistically significant increase of several analytes including nicotine, acetaldehyde, PM2.5, and PNC as compared to the background. The obtained levels were significantly lower (approximately 16, 8, 8 and 28 times for nicotine, acetaldehyde, PNC and PM2.5, respectively) compared to the levels resulting from conventional cigarette (CC) smoking under identical conditions. The maximum 30 min concentration of PNC (4.8 × 105 #/cm3), as well as maximum concentration of PNC (9.3 × 106 #/cm3) suggest that the intensive use of THS in a confined space with limited ventilation might cause substantially elevated aerosol concentrations, although these particles appeared as highly volatile ones and evaporated within seconds. Generally, the usage intensity (number of simultaneous users) prevailed as the most important factor positively affecting pollutant variations; another important factor was the distance to bystander.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Calefacción/métodos , Nicotiana/metabolismo , Productos de Tabaco/análisis , Contaminación por Humo de Tabaco/análisis , Aerosoles , Humanos
13.
Nutrients ; 11(2)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678167

RESUMEN

According to World Health Organisation (WHO) air pollution increases the risk of cardiovascular disorders, respiratory diseases, including COPD, lung cancer and acute respiratory infections, neuro-degenerative and other diseases. It is also known that various phytochemicals may mitigate such risks. This study tested if phytochemicals mangiferin (MNG) and Z-ligustilide (Z-LG) may protect PAH-exposed human lung bronchial epithelial cells (BEAS-2B). Organic PAH extract was obtained from the urban fine PM with high benzo(a)pyrene content collected in Eastern European mid-sized city during winter heating season. Cell proliferation traits and levels of intracellular oxidative stress were examined. Effect of MNG (0.5 µg/mL) alone or in combination with PAH on bronchial epithelium wound healing was evaluated. Both phytochemicals were also evaluated for their antioxidant properties in acellular system. Treatment with MNG produced strong cytoprotective effect on PAH-exposed cells (p < 0.01) while Z-LG (0.5 µg/mL) exhibited strong negative effect on cell proliferation in untreated and PAH-exposed cells (p < 0.001). MNG, being many times stronger antioxidant than Z-LG in chemical in vitro assays (p < 0.0001), was also able to decrease PAH-induced oxidative stress in the cell cultures (p < 0.05). Consequently MNG ameliorates oxidative stress, speeds up wound healing process and restores proliferation rate in PAH-exposed bronchial epithelium. Such protective effects of MNG in air pollution affected airway epithelium stimulate further research on this promising phytochemical.


Asunto(s)
4-Butirolactona/análogos & derivados , Material Particulado/toxicidad , Xantonas/farmacología , 4-Butirolactona/farmacología , Contaminantes Atmosféricos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/química , Fitoquímicos/farmacología , Mucosa Respiratoria/citología
14.
Nicotine Tob Res ; 21(10): 1371-1377, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924352

RESUMEN

INTRODUCTION: There are fundamental differences between electronic cigarettes (e-cigarettes) and conventional cigarette product categories with regards to potential environmental exposures, notably that e-cigarettes do not contain tobacco or generate side-stream emissions. Here we assess the spatial and temporal patterns of exhaled e-cigarette aerosol at a bystander's position, and compare it with conventional cigarette smoke emissions. METHODS: Smokers were asked to use e-cigarettes or smoke conventional cigarettes in a room-simulating chamber. Volunteers used the products at different distances from a heated mannequin, representing a bystander, and under different room ventilation rates. Aerosol particle concentrations and size distributions at the bystander's position were measured. RESULTS: For both product categories, the particle concentrations registered following each puff were in the same order of magnitude. However, for e-cigarettes the particle concentration returned rapidly to background values within seconds; for conventional cigarettes it increased with successive puffs, returning to background levels after 30-45 minutes. Unlike for the e-cigarette devices tested, such temporal variation was dependent on the room ventilation rate. Particle size measurements showed that exhaled e-cigarette particles were smaller than those emitted during smoking conventional cigarettes and evaporated almost immediately after exhalation, thus affecting the removal of particles through evaporation rather than displacement by ventilation. CONCLUSIONS: Significant differences between emissions from the tested e- and conventional cigarettes are reported. Exhaled e-cigarette particles are liquid droplets evaporating rapidly; conventional cigarette smoke particles are far more stable and linger. IMPLICATIONS: • Several factors potentially influencing particle behavior after exhalation of e-cigarette aerosols or emitted during smoking conventional cigarettes were studied.• Differences in particle size between those exhaled following use of e-cigarettes and those emitted during smoking of conventional cigarettes were observed.• E-cigarette particle concentrations decreased rapidly following exhalation due to evaporation.• The removal of particles following smoking conventional cigarettes was much slower and was dependent on the room ventilation rate.


Asunto(s)
Fumar Cigarrillos , Exposición a Riesgos Ambientales/análisis , Contaminación por Humo de Tabaco/análisis , Vapeo , Aerosoles/análisis , Espiración , Humanos , Tamaño de la Partícula
15.
Environ Sci Pollut Res Int ; 25(32): 32277-32291, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30225694

RESUMEN

Atmospheric particulate matter (PM) constitutes the major part of urban air pollution and is a heterogeneous mixture of solid and liquid particles of different origin, size, and chemistry. Human exposure to PM in urban areas poses considerable and significant adverse effects on the respiratory system and human health in general. Major contributors to PM content are combustion-related sources such as diesel vehicles, household, and industrial heating. PM is composed of thousands of different high molecular weight organic compounds, including poly-aromatic hydrocarbons (PAHs). The aim of this study was to clarify the cytotoxic effects of the extract of actual urban PM1 with high benzo[a]pyrene (BaP) content collected in Eastern European mid-sized city during winter heating season on human bronchial epithelial cells (BEAS-2B). Decreased cell viability, alteration of cell layer integrity, increased apoptosis, and oxidative stress were observed during the 3-day exposure to the PM extract. In addition, following PM exposure pro-inflammatory cytokine expression was upregulated at gene and protein levels. Morphology and motility changes, i.e., decreased cells' ability to cover scratch area, were also documented. We report here that the extract of urban PM1 may induce bronchial epithelium changes and render it pro-inflammatory and compromised within 3 days.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Células Epiteliales/efectos de los fármacos , Humanos , Industrias , Estrés Oxidativo/efectos de los fármacos , Material Particulado/análisis , Estaciones del Año , Pruebas de Toxicidad
16.
Int J Hyg Environ Health ; 221(6): 921-928, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29859666

RESUMEN

BACKGROUND: Driven by climate change mitigation, EU countries are committed to improve energy efficiency of their building stock by implementing the energy performance of buildings directive (EPBD). Should higher energy efficiency result in better indoor environmental quality (IEQ), this policy could also be seen as an opportunity to improve public health across Europe. OBJECTIVES: This paper focuses on the assessment of the effects of energy retrofits on occupant satisfaction with IEQ and health in multifamily buildings. METHODS: Data on occupant satisfaction with IEQ and health were collected from the occupants of 39 Finnish and 15 Lithuanian multifamily buildings (an average of five apartments per building, one adult per apartment) both before and after energy retrofits (such as improving thermal insulation, windows, heating and/or ventilation systems). Parallel to the data collected from the occupants, data on several IEQ parameters, including temperature, temperature factor, and air change rate, were collected from their apartments. Moreover, data from seven Finnish and five Lithuanian non-retrofitted control buildings were collected according to the same protocol. RESULTS: Occupant satisfaction regarding indoor temperature was associated with both retrofit status (OR 5.3, 95% CI 2.6-11.0) and measured IEQ parameters (indoor temperature OR 1.4 per 1 °C increase, temperature factor OR 1.1 per 1% increase, and air change rate OR 5.6 per 1/h increase). Additional positive associations were found between retrofit status and occupants reporting absence of upper respiratory symptoms (OR 1.8, 95% CI 1.1-2.9) as well as not missing work or school due to respiratory infections (OR 4.1, 95% CI 1.2-13.8), however, these associations were independent of the measured IEQ parameters. CONCLUSIONS: There seems to be a strong subjective component related to the observed changes in occupant satisfaction with IEQ and health as a result of energy retrofitting in buildings. Further studies are needed to verify the actual mechanisms, as well as possible long term effects.


Asunto(s)
Contaminación del Aire Interior/análisis , Conservación de los Recursos Energéticos , Vivienda , Satisfacción Personal , Adulto , Ambiente Controlado , Salud Ambiental , Femenino , Finlandia/epidemiología , Humanos , Lituania/epidemiología , Masculino , Enfermedades Respiratorias/epidemiología , Temperatura
17.
Chemosphere ; 206: 568-578, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29778082

RESUMEN

With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Calefacción/efectos adversos , Nicotina/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Contaminación del Aire Interior/análisis , Calefacción/métodos , Humanos , Nicotina/análisis , Contaminación por Humo de Tabaco/análisis
18.
Environ Technol ; 39(17): 2215-2222, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28685642

RESUMEN

The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.


Asunto(s)
Aguas Residuales , Purificación del Agua , Animales , Daphnia , Residuos Industriales , Diseño Interior y Mobiliario , Oxidación-Reducción , Ozono , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad
19.
Sci Total Environ ; 621: 398-406, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29190562

RESUMEN

Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO2) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use.

20.
Environ Sci Pollut Res Int ; 24(21): 17584-17597, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28597387

RESUMEN

A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.


Asunto(s)
Ozono , Aguas Residuales , Contaminantes del Agua/química , Catálisis , Naftoles , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA