Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(30): 45221-45229, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35146605

RESUMEN

The main goal of this study was to assess alternatives to the current challenges on environmental quality and circular economy. The former is here addressed by the treatment of radioactively contaminated solutions, and the latter by using abundant and low-cost biomass. In this paper, we examine the biosorption of hexavalent uranium (U(VI)) in a batch system using the macrophytes Limnobium laevigatum and Azolla sp. by three operational parameters: biomass dose, metal ion concentration, and contact time. Simulated solutions were firstly addressed with two biomasses, followed by studies with real liquid organic radioactive waste (LORW) with Azolla sp. The batch experiments were carried out by mixing 0.20 g biomass in 10 mL of the prepared solution or LORW. The total contact time employed for the determination of the equilibrium times was 240 min, and the initial U(VI) concentration was 0.63 mmol L-1. The equilibrium times were 15 min for L. laevigatum and 30 min for Azolla sp. respectively. A wide range of initial U(VI) concentrations (0.25-36 mmol L-1) was then used to assess the adsorption capacity of each macrophyte. Isotherm models validated the adsorption performance of the biosorption process. Azolla sp. presented a much higher U(VI) uptake (0.474 mmol g-1) compared to L. laevigatum (0.026 mmol g-1). When in contact with LORW, Azolla sp. removed much less uranium, indicating an adsorption capacity of 0.010 mmol g-1. In conclusion, both biomasses, especially Azolla sp., can be used in the treatment of uranium-contaminated solutions.


Asunto(s)
Helechos , Hydrocharitaceae , Uranio , Contaminantes Radiactivos del Agua , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Agua
2.
Environ Sci Pollut Res Int ; 29(53): 79816-79829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34816347

RESUMEN

Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L-1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L-1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g-1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g-1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L-1, pH 3, and M = 5 g L-1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L-1, pH 3, and M = 15 g L-1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g-1 for hydroxyapatite and 22.08 mg g-1 for bone meal, achieving uranium removal efficiencies higher than 99%.


Asunto(s)
Residuos Radiactivos , Uranio , Contaminantes Radiactivos del Agua , Durapatita , Proyectos de Investigación , Adsorción , Materiales Biocompatibles , Cinética , Concentración de Iones de Hidrógeno
3.
Environ Sci Pollut Res Int ; 27(29): 36651-36663, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32564321

RESUMEN

Rice and coffee husks (raw and chemically activated) are examined as potential biosorption materials regarding their capacity to remove U (total), 241Am, and 137Cs. The physical parameters evaluated were the morphological characteristics of the biomass, real and apparent density, and surface area. Contact times for the batch experiments were 0.5, 1, 2, and 4 h, and the concentrations tested ranged between 10% of the total concentration and the radioactive waste itself without any dilution. The results were evaluated by experimental sorption capacity, ternary isotherm, and kinetics models. The kinetics results showed that equilibrium was reached after 2 h for all biomass. Raw coffee husk showed the best adsorption results in terms of maximum capacity (qmax) for all three radionuclides, which were 1.96, 39.4 × 10-6, and 46.6 × 10-9 mg g-1 for U, Am, and Cs, respectively. The biosorption process for the raw and activated rice husks was best represented by the Langmuir ternary isotherm model with two sites. For the coffee husk, in the raw and activated states, the biosorption process was best described by the modified Jain and Snoeyink ternary model. These results suggest that biosorption with these biomaterials can be applied in the treatment of liquid organic radioactive waste containing mainly uranium and americium.


Asunto(s)
Oryza , Residuos Radiactivos , Contaminantes Químicos del Agua , Adsorción , Biomasa , Radioisótopos de Cesio , Café , Concentración de Iones de Hidrógeno , Cinética
4.
J Environ Radioact ; 203: 179-186, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30925263

RESUMEN

Biosorption-based technologies have been proposed for the removal of radionuclides from radioactive liquid waste containing organic compounds. Nevertheless, pytoremediation potential of uranium (U) by nonliving aquatic macrophytes Lemna sp. and Pistia stratiotes has not been previously addressed. In this study, uranium biosorption capacity by Pistia stratiotes and Lemna sp. was evaluated by equilibrium and kinetics experiments. The biomasses were added to synthetic and real waste solutions. The assays were tested in polypropylene vials containing 10 mL of uranium nitrate solution and 0.20 g of biomass. Solutions ranging from 0.25 to 84.03 mmol l-1 were employed for the assessment of uranium concentration in each macrophyte. The equilibrium time was 1 h for both macrophytes. Lemna sp. achieved the highest sorption capacity with the use of the synthetic solution, which was 0.68 mmol g-1 for the macrophyte. Since Lemna sp. exhibit a much higher adsorption capacity, only this biomass was exposed to the actual waste solution, being able to adsorb 9.24 × 10-3 mmol g-1 U (total). The results show that these materials are potentially applicable to the treatment of liquid radioactive waste.


Asunto(s)
Araceae/metabolismo , Biodegradación Ambiental , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Adsorción
5.
Biol Trace Elem Res ; 182(2): 303-308, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28770412

RESUMEN

Acute kidney injury (AKI) is an important health problem and can be caused by number of factors. The use of aminoglycosides, such as gentamicin, is one of these factors. Recently, an effort has been made to find biomarkers to guide treatment protocols. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to estimate the contents of Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn in serum and urine of the healthy, AKI, and spontaneous recovery (SR) groups of animals. The animal model of AKI and SR was validated by measuring serum and urinary urea and creatinine. The quantitative determination of the elements showed a decrease in serum levels of Ca, and Fe in the AKI group (P<0.01 vs. healthy), with a return to normal levels in the SR group, without a significant difference between the healthy and SR groups. In the urine samples, there was a decrease in P and Na levels in the AKI group (P<0.001 and P<0.01 vs. healthy), but Ca levels were increased in this group compared with the healthy and SR groups (P<0.01). These findings indicate that mineral elements might be useful as biomarkers for AKI.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/orina , Biomarcadores/análisis , Oligoelementos/análisis , Animales , Biomarcadores/sangre , Biomarcadores/orina , Creatinina/sangre , Creatinina/orina , Masculino , Espectrometría de Masas/métodos , Minerales/sangre , Minerales/orina , Ratas Wistar , Oligoelementos/sangre , Oligoelementos/orina
6.
Biol Trace Elem Res ; 130(2): 107-13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19214399

RESUMEN

The development of cancer is a complex, multistage process during which a normal cell undergoes genetic changes that result in phenotypic alterations and in the acquisition of the ability to invade other sites. Inductively coupled plasma optical emission spectroscopy was used to estimate the contents of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, and Zn in healthy kidney and renal cell carcinoma (RCC), and significant differences were found for all elements. Along with the progression of the malignant disease, a progressive decrease of Cd and K was observed. In fact, for Cd, the concentration in stage T4 was 263.9 times lower than in stage T1, and for K, the concentration in stage T4 was 1.73 times lower than in stage T1. Progressive accumulation was detected for P, Pb, and Zn in stage T4. For P, the concentration in stage T4 was 11.1 times higher than in stage T1; for Pb, the concentration in stage T4 was 232.7 times higher than in T1; and for Zn, the concentration in T4 was 8.452 times higher than in T1. This study highlights the marked differences in the concentrations of selected trace metals in different malignant tumor stages. These findings indicate that some trace metals may play important roles in the pathogenesis of RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Riñón/metabolismo , Oligoelementos/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA