Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1415100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933027

RESUMEN

Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.

2.
STAR Protoc ; 4(2): 102196, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36995932

RESUMEN

We describe here a genome-wide screening approach to identify the most critical core reaction among a network of many that are supported by an essential gene to establish cell viability. We describe steps for maintenance plasmid construction, knockout cell construction, and phenotype validation. We then detail isolation of suppressors, whole-genome sequencing analysis, and reconstruction of CRISPR mutants. We focus on E. coli trmD, which encodes an essential methyl transferase that synthesizes m1G37 on the 3'-side of the tRNA anticodon. For complete details on the use and execution of this protocol, please refer to Masuda et al. (2022).1.

3.
Cell Rep ; 41(4): 111539, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288695

RESUMEN

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3'-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival.


Asunto(s)
Anticodón , Uso de Codones , Metilación , Supervivencia Celular/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Codón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina , Prolina/genética
4.
J Mol Biol ; 434(8): 167440, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-34995554

RESUMEN

Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-canonical amino acid (ncAA) into the polypeptide chain. While this strategy is attractive for genome expansion in biotechnology and bioengineering endeavors, improving the yield is hampered by a lack of understanding of where the shift can occur in an elongation cycle of protein synthesis. Lacking a clear answer to this question, current efforts have focused on designing +1-frameshifting tRNAs with an extra nucleotide inserted to the anticodon loop for pairing with a quadruplet codon in the aminoacyl-tRNA binding (A) site of the ribosome. However, the designed and evolved +1-frameshifting tRNAs vary broadly in achieving successful genome expansion. Here we summarize recent work on +1-frameshifting tRNAs. We suggest that, rather than engineering the quadruplet anticodon-codon pairing scheme at the ribosome A site, efforts should be made to engineer the pairing scheme at steps after the A site, including the step of the subsequent translocation and the step that stabilizes the pairing scheme in the +1-frame in the peptidyl-tRNA binding (P) site.


Asunto(s)
Codón , Sistema de Lectura Ribosómico , Código Genético , Ingeniería de Proteínas , ARN de Transferencia , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Codón/genética , Escherichia coli/metabolismo , Sistema de Lectura Ribosómico/genética , Ingeniería de Proteínas/métodos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
5.
Nucleic Acids Res ; 49(17): 10046-10060, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34417618

RESUMEN

Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with -1 frameshifting.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Extensión de la Cadena Peptídica de Translación/genética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ribosomas/metabolismo , Anticodón/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Codón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , ARN Mensajero/genética , Sistemas de Lectura/genética
6.
Elife ; 102021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382933

RESUMEN

N1-methylation of G37 is required for a subset of tRNAs to maintain the translational reading-frame. While loss of m1G37 increases ribosomal +1 frameshifting, whether it incurs additional translational defects is unknown. Here, we address this question by applying ribosome profiling to gain a genome-wide view of the effects of m1G37 deficiency on protein synthesis. Using E coli as a model, we show that m1G37 deficiency induces ribosome stalling at codons that are normally translated by m1G37-containing tRNAs. Stalling occurs during decoding of affected codons at the ribosomal A site, indicating a distinct mechanism than that of +1 frameshifting, which occurs after the affected codons leave the A site. Enzyme- and cell-based assays show that m1G37 deficiency reduces tRNA aminoacylation and in some cases peptide-bond formation. We observe changes of gene expression in m1G37 deficiency similar to those in the stringent response that is typically induced by deficiency of amino acids. This work demonstrates a previously unrecognized function of m1G37 that emphasizes its role throughout the entire elongation cycle of protein synthesis, providing new insight into its essentiality for bacterial growth and survival.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico , Expresión Génica , Biosíntesis de Proteínas/fisiología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Metilación , Biosíntesis de Proteínas/genética , Especificidad por Sustrato
7.
Nat Commun ; 12(1): 4644, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330903

RESUMEN

Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Extensión de la Cadena Peptídica de Translación/genética , Factor G de Elongación Peptídica/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Ribosomas/genética , Biocatálisis , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
8.
Nat Commun ; 12(1): 328, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436566

RESUMEN

While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Genoma Bacteriano , ARN de Transferencia/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , Aminoacilación , Anticodón/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Hidrólisis , Metilación , Modelos Moleculares , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
9.
Wiley Interdiscip Rev RNA ; 11(6): e1609, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32533808

RESUMEN

A major threat to public health is the resistance and persistence of Gram-negative bacteria to multiple drugs during antibiotic treatment. The resistance is due to the ability of these bacteria to block antibiotics from permeating into and accumulating inside the cell, while the persistence is due to the ability of these bacteria to enter into a nonreplicating state that shuts down major metabolic pathways but remains active in drug efflux. Resistance and persistence are permitted by the unique cell envelope structure of Gram-negative bacteria, which consists of both an outer and an inner membrane (OM and IM, respectively) that lay above and below the cell wall. Unexpectedly, recent work reveals that m1 G37 methylation of tRNA, at the N1 of guanosine at position 37 on the 3'-side of the tRNA anticodon, controls biosynthesis of both membranes and determines the integrity of cell envelope structure, thus providing a novel link to the development of bacterial resistance and persistence to antibiotics. The impact of m1 G37-tRNA methylation on Gram-negative bacteria can reach further, by determining the ability of these bacteria to exit from the persistence state when the antibiotic treatment is removed. These conceptual advances raise the possibility that successful targeting of m1 G37-tRNA methylation can provide new approaches for treating acute and chronic infections caused by Gram-negative bacteria. This article is categorized under: Translation > Translation Regulation RNA Processing > RNA Editing and Modification RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Antibacterianos/química , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Humanos , Metilación/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
11.
Cell Syst ; 8(4): 302-314.e8, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30981730

RESUMEN

Gram-negative bacteria are intrinsically resistant to drugs because of their double-membrane envelope structure that acts as a permeability barrier and as an anchor for efflux pumps. Antibiotics are blocked and expelled from cells and cannot reach high-enough intracellular concentrations to exert a therapeutic effect. Efforts to target one membrane protein at a time have been ineffective. Here, we show that m1G37-tRNA methylation determines the synthesis of a multitude of membrane proteins via its control of translation at proline codons near the start of open reading frames. Decreases in m1G37 levels in Escherichia coli and Salmonella impair membrane structure and sensitize these bacteria to multiple classes of antibiotics, rendering them incapable of developing resistance or persistence. Codon engineering of membrane-associated genes reduces their translational dependence on m1G37 and confers resistance. These findings highlight the potential of tRNA methylation in codon-specific translation to control the development of multi-drug resistance in Gram-negative bacteria.


Asunto(s)
Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/genética , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Metilación , ARN de Transferencia/genética , Salmonella , Transcriptoma , ARNt Metiltransferasas/metabolismo
12.
Sci Rep ; 8(1): 7229, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739985

RESUMEN

Apples are well known to have various benefits for the human body. Procyanidins are a class of polyphenols found in apples that have demonstrated effects on the circulatory system and skeletal organs. Osteoarthritis (OA) is a locomotive syndrome that is histologically characterized by cartilage degeneration associated with the impairment of proteoglycan homeostasis in chondrocytes. However, no useful therapy for cartilage degeneration has been developed to date. In the present study, we detected beneficial effects of apple polyphenols or their procyanidins on cartilage homeostasis. An in vitro assay revealed that apple polyphenols increased the activities of mitochondrial dehydrogenases associated with an increased copy number of mitochondrial DNA as well as the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), suggesting the promotion of PGC-1α-mediated mitochondrial biogenesis. Apple  procyanidins also enhanced proteoglycan biosynthesis with aggrecan upregulation in primary chondrocytes. Of note, oral treatment with apple procyanidins prevented articular cartilage degradation in OA model mice induced by mitochondrial dysfunction in chondrocytes. Our findings suggest that apple procyanidins are promising food components that inhibit OA progression by promoting mitochondrial biogenesis and proteoglycan homeostasis in chondrocytes.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Osteoartritis/prevención & control , Polifenoles/farmacología , Proantocianidinas/farmacología , Proteoglicanos/biosíntesis , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Línea Celular , Condrocitos/metabolismo , Condrocitos/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Masculino , Malus/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Biogénesis de Organelos , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Paraquat/antagonistas & inhibidores , Paraquat/toxicidad , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Polifenoles/aislamiento & purificación , Cultivo Primario de Células , Proantocianidinas/aislamiento & purificación , Proteoglicanos/agonistas , Proteoglicanos/genética , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/genética
13.
Nucleic Acids Res ; 46(7): e37, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361055

RESUMEN

Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3'-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.


Asunto(s)
Anticodón/genética , Conformación de Ácido Nucleico , ARN de Transferencia de Prolina/genética , ARN de Transferencia/genética , Secuencia de Bases , Codón/genética , Escherichia coli/genética , Metilación , ARN Bacteriano/genética , Uridina/análogos & derivados , Uridina/genética
14.
ACS Pharmacol Transl Sci ; 1(1): 21-31, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219202

RESUMEN

Although abnormal increases in the level or activity of cyclin-dependent kinase 4 (CDK4) occur frequently in cancer, the underlying mechanism is not fully understood. Here, we show that methionyl-tRNA synthetase (MRS) specifically stabilizes CDK4 by enhancing the formation of the complex between CDK4 and a chaperone protein. Knockdown of MRS reduced the CDK4 level, resulting in G0/G1 cell cycle arrest. The effects of MRS on CDK4 stability were more prominent in the tumor suppressor p16INK4a-negative cancer cells because of the competitive relationship of the two proteins for binding to CDK4. Suppression of MRS reduced cell transformation and the tumorigenic ability of a p16INK4a-negative breast cancer cell line in vivo. Further, the MRS levels showed a positive correlation with those of CDK4 and the downstream signals at high frequency in p16INK4a-negative human breast cancer tissues. This work revealed an unexpected functional connection between the two enzymes involving protein synthesis and the cell cycle.

15.
Front Genet ; 9: 713, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687389

RESUMEN

Although the genetic code is degenerate, synonymous codons for the same amino acid are not translated equally. Codon-specific translation is important for controlling gene expression and determining the proteome of a cell. At the molecular level, codon-specific translation is regulated by post-transcriptional epigenetic modifications of tRNA primarily at the wobble position 34 and at position 37 on the 3'-side of the anticodon. Modifications at these positions determine the quality of codon-anticodon pairing and the speed of translation on the ribosome. Different modifications operate in distinct mechanisms of codon-specific translation, generating a diversity of regulation that is previously unanticipated. Here we summarize recent work that demonstrates codon-specific translation mediated by the m1G37 methylation of tRNA at CCC and CCU codons for proline, an amino acid that has unique features in translation.

16.
Enzymes ; 41: 89-115, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28601227

RESUMEN

TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m1G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m1G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis. TrmD is unique among AdoMet-dependent methyl transferases in that it requires Mg2+ in the catalytic mechanism. This Mg2+ dependence is important for regulating Mg2+ transport to Salmonella for survival of the pathogen in the host cell. The strict conservation of TrmD among bacterial species suggests that a better characterization of its enzymology and biology will have a broad impact on our understanding of bacterial pathogenesis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metilación , Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidad por Sustrato
17.
Nucleic Acids Res ; 45(7): 4081-4093, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27956502

RESUMEN

Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering.


Asunto(s)
Aptámeros de Nucleótidos/química , Biosíntesis de Proteínas , Sondas ARN/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aptámeros de Nucleótidos/metabolismo , Compuestos de Bencilo/química , Escherichia coli/genética , Colorantes Fluorescentes , Imidazolinas/química , Microscopía Fluorescente , Ribosomas/metabolismo , Spinacia oleracea/genética
18.
Proc Natl Acad Sci U S A ; 113(52): 15096-15101, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27849575

RESUMEN

In Salmonella enterica serovar Typhimurium, Mg2+ limitation induces transcription of the mgtA Mg2+ transport gene, but the mechanism involved is unclear. The 5' leader of the mgtA mRNA contains a 17-codon, proline-rich ORF, mgtL, whose translation regulates the transcription of mgtA [Park S-Y et al. (2010) Cell 142:737-748]. Rapid translation of mgtL promotes formation of a secondary structure in the mgtA mRNA that permits termination of transcription by the Rho protein upstream of mgtA, whereas slow or incomplete translation of mgtL generates a different structure that blocks termination. We identified the following mutations that conferred high-level transcription of mgtA at high [Mg2+]: (i) a base-pair change that introduced an additional proline codon into mgtL, generating three consecutive proline codons; (ii) lesions in rpmA and rpmE, which encode ribosomal proteins L27 and L31, respectively; (iii) deletion of efp, which encodes elongation factor EF-P that assists the translation of proline codons; and (iv) a heat-sensitive mutation in trmD, whose product catalyzes the m1G37 methylation of tRNAPro Furthermore, substitution of three of the four proline codons in mgtL rendered mgtA uninducible. We hypothesize that the proline codons present an impediment to the translation of mgtL, which can be alleviated by high [Mg2+] exerted on component(s) of the translation machinery, such as EF-P, TrmD, or a ribosomal factor. Inadequate [Mg2+] precludes this alleviation, making mgtL translation inefficient and thereby permitting mgtA transcription. These findings are a significant step toward defining the target of Mg2+ in the regulation of mgtA transcription.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Magnesio/química , Proteínas de Transporte de Membrana/metabolismo , Péptidos/química , Prolina/química , Salmonella typhimurium/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Codón , Proteínas de Escherichia coli/química , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Mutación , Factores de Elongación de Péptidos/química , Péptidos/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Biosíntesis de Proteínas , ARN de Transferencia/química , Ribosomas/química , Ribosomas/metabolismo , Transcripción Genética/efectos de los fármacos , ARNt Metiltransferasas/química
19.
Methods Enzymol ; 560: 91-116, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26253967

RESUMEN

Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3'-side of the anticodon to generate m(1)G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveals that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single-turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions.


Asunto(s)
Proteínas de Escherichia coli/química , ARN de Transferencia/química , ARNt Metiltransferasas/química , Catálisis , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Metilación , ARN de Transferencia/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/metabolismo
20.
Int J Mol Sci ; 16(7): 14866-83, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26140378

RESUMEN

Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA to shift into alternative reading frames. An example is the native UGG isoacceptor of E. coli tRNAPro whose wobble nucleotide U34 is post-transcriptionally modified to cmo5U34 to read all four proline codons (5'-CCA, 5'-CCC, 5'-CCG, and 5'-CCU). Because the pairing of the modified anticodon to CCC codon is particularly weak relative to CCA and CCG codons, this tRNA can readily shift into both the +1 and +2-frame on the slippery mRNA sequence CCC-CG. We show that the shift to the +2-frame is more dominant, driven by the higher stability of the codon-anticodon pairing at the wobble position. Kinetic analysis suggests that both types of shifts can occur during stalling of the tRNA in a post-translocation complex or during translocation from the A to the P-site. Importantly, while the +1-frame post complex is active for peptidyl transfer, the +2-frame complex is a poor peptidyl donor. Together with our recent work, we draw a mechanistic distinction between +1 and +2-frameshifts, showing that while the +1-shifts are suppressed by the additional post-transcriptionally modified m1G37 nucleotide in the anticodon loop, the +2-shifts are suppressed by the ribosome, supporting a role of the ribosome in the overall quality control of reading-frame maintenance.


Asunto(s)
Mutación del Sistema de Lectura , ARN de Transferencia de Prolina/genética , Emparejamiento Base , Codón/genética , Escherichia coli/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...