Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Med Int ; 2023: 5281260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168542

RESUMEN

In this article, we present the first case report of a chicken mycosis caused by F. proliferatum occurred on a private farm in the Russian Federation. Lesions on the skin of the legs and scallops were reported. The object of this study was samples of feed and pathological material from sick hens-layers. Mycological analysis included determination of the total number of fungi (TNF) and identification and determination of the toxicity and pathogenicity of the isolates. The identification of the isolate was carried out taking into account direct microscopy, morphological features, and the method of molecular genetic analysis. Microscopic fungi of the genus Penicillium and Rhizopus were isolated by mycological analysis of the feed. The test feed was nontoxic. Mycological examination of pathological material (scrapings from the combs and affected legs) identified an isolate of Fusarium proliferatum, which showed toxicity on biological objects (protozoa, rabbits) and pathogenicity (white mice). Dermal application of F. proliferatum suspension was accompanied by reddening of the rabbit skin. Intraperitoneal injection of fungal spores caused mycosis in white mice. Polymerase chain reaction (PCR) made it possible to identify this type of microscopic fungus (F. proliferatum) with high accuracy in the samples under study. The research results allow us to consider F. proliferatum as a cause of poultry disease against the background of predisposing factors in the form of desquamation of the stratum corneum of the skin against the background of immunosuppression and metabolic disorders caused by an imbalance in the diet.

2.
mSphere ; 7(6): e0021222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36218346

RESUMEN

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.


Asunto(s)
Peróxido de Hidrógeno , Serratia marcescens , Humanos , Animales , Serratia marcescens/genética , Serratia marcescens/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Medios de Cultivo Condicionados , Antibacterianos/metabolismo , Estrés Oxidativo
3.
mSphere ; 6(2)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692192

RESUMEN

Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics.IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Estrés Oxidativo , Polimixinas/farmacología , Serratia marcescens/efectos de los fármacos , Serratia marcescens/genética , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Serratia marcescens/metabolismo
4.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048396

RESUMEN

Here we present a draft genome sequence of laboratory strain Serratia marcescens SM6. Using the antiSMASH 5.0 prediction tool, we identified five biosynthetic gene clusters involved in secondary metabolite production (two siderophores and a biosurfactant serratamolide, a glucosamine derivative, and a thiopeptide). Whole-genome sequencing information will be useful for the detailed study of metabolites produced by Serratia marcescens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...