Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 181-186, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153046

RESUMEN

High-entropy oxide nanoparticles (HEO NPs) have been intensively studied because of their attractive properties, such as high stability and enhanced catalytic activity. In this work, for the first time, denary HEO NPs were successfully synthesized using a continuous supercritical hydrothermal flow process without calcination. Interestingly, this process allows the formation of HEO NPs on the order of seconds at a relatively lower temperature. The synthesized HEO NPs contained 10 metal elements, La, Ca, Sr, Ba, Fe, Mn, Co, Ru, Pd, and Ir, and had a perovskite-type structure. Atomic-resolution high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements revealed homogeneous dispersion of the 10 metal elements. The obtained HEO NPs also exhibited a higher catalytic activity for the CO oxidation reaction than that of the LaFeO3 NPs.

2.
J Am Chem Soc ; 145(44): 24005-24011, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883673

RESUMEN

Technetium (Tc), atomic number 43, is an element that humans cannot freely use even in the 21st century because Tc is radioactive and has no stable isotope. In this report, we present molybdenum-ruthenium-carbon solid-solution alloy (MoxRu1-xCy) nanoparticles (NPs) that are expected to have an electronic structure similar to that of technetium carbide (TcCy). MoxRu1-xCy NPs were synthesized by annealing under a helium/hydrogen atmosphere following thermal decomposition of metal precursors. The obtained NPs had a solid-solution structure in the whole composition range. MoxRu1-xCy with a cubic structure (down to 30 atom % Mo in the metal ratio) showed a superconducting state, and the transition temperature (Tc) increased with increasing Mo composition. The continuous change in Tc across that of TcCy indicates the continuous control of the electronic structure by solid-solution alloying, leading to pseudo-TcCy. Density functional theory calculations indicated that the synthesized Mo0.53Ru0.47C0.41 has a similar electronic structure to TcC0.41.

3.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37471524

RESUMEN

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

4.
Chem Commun (Camb) ; 59(62): 9485-9488, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439509

RESUMEN

We first report the synthesis of B2-structured indium-platinum group metal high-entropy intermetallic nanoparticles (In-PGM HEI NPs). The synthesis was achieved by a wet-chemistry method and subsequent heat treatment. The crystal structure of these NPs is unique in the coexistence of completely orderly arranged indium and disorderly arranged PGMs.

5.
Small ; 18(42): e2204225, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36117112

RESUMEN

Highly efficient thermoelectric materials require, including point defects within the host matrix, secondary phases generating positive effects on lowering lattice thermal conductivity (κL ). Amongst effective dopants for a functional thermoelectric material, SnTe, Cu doping realizes the ultra-low κL approaching the SnTe amorphous limit. Such effective κL reduction is first attributed to strong phonon scattering by substitutional Cu atoms at Sn sites and interstitial defects in the host SnTe. However, other crystallographic defects in secondary phases have been unfocused. Here, this work reports micro- to atomic-scale characterization on secondary phases of Cu-doped SnTe using advanced microscopes. It is found that Cu-rich secondary phases begin precipitation ≈1.7 at% Cu (x = 0.034 where Sn1- x Cux Te). The Cu-rich secondary phases encapsulate two distinct solids: Cu2 SnTe3 ( F 4 ¯ 3 m $F\bar{4}3m$ ) has semi-coherent interfaces with SnTe ( F m 3 ¯ m $Fm\bar{3}{\rm{m}}$ ) such that they minimize lattice mismatch to favor the thermoelectric transport; the other resembles a stoichiometric Cu2 Te model, yet is so meta-stable that it demonstrates not only various defects such as dislocation cores and ordered/disordered Cu vacancies, but also dynamic grain-boundary migration with heating and a subsequent phase transition ≈350 °C. The atomic-scale analysis on the Cu-rich secondary phases offers viable strategies for reducing κL through Cu addition to SnTe.

6.
ACS Omega ; 7(28): 24452-24460, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874216

RESUMEN

Ruthenium catalysts may allow for realization of renewable energy-based ammonia synthesis processes using mild reaction conditions (<400 °C, <10 MPa). However, ruthenium is relatively rare and therefore expensive. Here, we report a Co nanoparticle catalyst loaded on a basic Ba/La2O3 support and prereduced at 700 °C (Co/Ba/La2O3_700red) that showed higher ammonia synthesis activity at 350 °C and 1.0-3.0 MPa than two benchmark Ru catalysts, Cs+/Ru/MgO and Ru/CeO2. The synthesis rate of the catalyst at 350 °C and 1.0 MPa (19.3 mmol h-1 g-1) was 8.0 times that of Co/Ba/La2O3_500red and 6.9 times that of Co/La2O3_700red. The catalyst showed ammonia synthesis activity at temperatures down to 200 °C. Reduction at the high temperature induced the formation of BaO-La2O3 nanofractions around the Co nanoparticles by decomposition of BaCO3, which increased turnover frequency, inhibited the sintering of Co nanoparticles, and suppressed ammonia poisoning. These strategies may also be applicable to other non-noble metal catalysts, such as nickel.

7.
Natl Sci Rev ; 9(6): nwab117, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35822066

RESUMEN

Two-dimensional (2D) ferromagnetic materials have been discovered with tunable magnetism and orbital-driven nodal-line features. Controlling the 2D magnetism in exfoliated nanoflakes via electric/magnetic fields enables a boosted Curie temperature (T C) or phase transitions. One of the challenges, however, is the realization of high T C 2D magnets that are tunable, robust and suitable for large scale fabrication. Here, we report molecular-beam epitaxy growth of wafer-scale Fe3+XGeTe2 films with T C above room temperature. By controlling the Fe composition in Fe3+XGeTe2, a continuously modulated T C in a broad range of 185-320 K has been achieved. This widely tunable T C is attributed to the doped interlayer Fe that provides a 40% enhancement around the optimal composition X = 2. We further fabricated magnetic tunneling junction device arrays that exhibit clear tunneling signals. Our results show an effective and reliable approach, i.e. element doping, to producing robust and tunable ferromagnetism beyond room temperature in a large-scale 2D Fe3+XGeTe2 fashion.

8.
J Am Chem Soc ; 144(26): 11525-11529, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749353

RESUMEN

High-entropy alloy nanoparticles (HEA NPs) emerged as catalysts with superior performances that are not shown in monometallic catalysts. Although many kinds of synthesis techniques of HEA NPs have been developed recently, synthesizing HEA NPs with ultrasmall particle size and narrow size distribution remains challenging because most of the reported synthesis methods require high temperatures that accelerate particle growth. This work provides a new methodology for the fabrication of ultrasmall and homogeneous HEA NPs using a continuous-flow reactor with a liquid-phase reduction method. We successfully synthesized ultrasmall IrPdPtRhRu HEA NPs (1.32 ± 0.41 nm), theoretically each consisting of approximately 50 atoms. This average size is the smallest ever reported for HEA NPs. All five elements are homogeneously mixed at the atomic level in each particle. The obtained HEA NPs marked a significantly high hydrogen evolution reaction (HER) activity with a very small 6 mV overpotential at 10 mA/cm-2 in acid, which is one-third of the overpotential of commercial Pt/C. In addition, although mass production of HEA NPs is still difficult, this flow synthesis can provide high productivity with high reproducibility, which is more energy efficient and suitable for mass production. Therefore, this study reports the 1 nm-sized HEA NPs with remarkably high HER activity and establishes a platform for the production of ultrasmall and homogeneous HEA NPs.


Asunto(s)
Aleaciones , Nanopartículas , Catálisis , Entropía , Reproducibilidad de los Resultados
9.
Nanoscale ; 14(27): 9842-9848, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35771202

RESUMEN

The ordered structure of platinum-cobalt (Pt-Co) alloy nanoparticles has been studied actively because the structure influences their magnetic and catalytic properties. On the Pt-Co alloy's surface, Pt atoms preferentially segregate during annealing to reduce the surface energy. Such surface segregation has been shown to promote the formation of an ordered structure near the surface of Pt-Co thin films. Although this phenomenon seems also useful to control the nanoparticle structure, this has not been observed. Here, we have studied the ordered structure in annealed Pt@Co core-shell nanoparticles using a scanning transmission electron microscope. The nanoparticles were chemically synthesized, and their structural changes after annealing at 600 °C, 700 °C, and 800 °C for 3 h were observed. After being annealed at 600 °C and 800 °C, the particles contained the L12-Pt3Co ordered structure. The structure seems reasonable considering an initial Pt : Co ratio of ∼4 : 1. However, we found that the L10-PtCo structure was formed near the nanoparticle surface after annealing at 700 °C. The L10-PtCo structure was thought to be formed from the surface segregation of Pt atoms and insufficient diffusion of Pt and Co atoms to mix them in the particle overall.

10.
Chem Commun (Camb) ; 58(44): 6421-6424, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35546308

RESUMEN

Platinum-group-metal quinary RuRhPdIrPt alloy nanoparticles were synthesised with compositions slightly away from equimolar, and their crystal and electronic structures were investigated. Their lattice constant changed linearly with composition, while the d-band centre changed nonlinearly. Their catalytic activities for the hydrogen evolution reaction were not correlated with their d-band centre.

11.
J Am Chem Soc ; 144(8): 3365-3369, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35166532

RESUMEN

The compositional space of high-entropy-alloy nanoparticles (HEA NPs) significantly expands the diversity of the materials library. Every atom in HEA NPs has a different elemental coordination environment, which requires knowledge of the local electronic structure at an atomic level. However, such structure has not been disclosed experimentally or theoretically. We synthesized HEA NPs composed of all eight noble-metal-group elements (NM-HEA) for the first time. Their electronic structure was revealed by hard X-ray photoelectron spectroscopy and density function theory calculations with NP models. The NM-HEA NPs have a lower degeneracy in energy level compared with the monometallic NPs, which is a common feature of HEA NPs. The local density of states (LDOS) of every surface atom was first revealed. Some atoms of the same constituent element in HEA NPs have different LDOS profiles, whereas atoms of other elements have similar LDOS profiles. In other words, one atom in HEA loses its elemental identity and it may be possible to create an ideal LDOS by adjusting the neighboring atoms. The tendency of the electronic structure change was shown by supervised learning. The NM-HEA NPs showed 10.8-times higher intrinsic activity for hydrogen evolution reaction than commercial Pt/C, which is one of the best catalysts.

12.
J Am Chem Soc ; 144(9): 4224-4232, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35196005

RESUMEN

The crystal structure significantly affects the physical and chemical properties of solids. However, the crystal structure-dependent properties of alloys are rarely studied because controlling the crystal structure of an alloy at the same composition is extremely difficult. Here, for the first time, we successfully demonstrate the synthesis of binary Ru-Pt (Ru/Pt = 7:3) and Ru-Ir (Ru/Ir = 7:3) and ternary Ru-Ir-Pt (Ru/Ir/Pt = 7:1.5:1.5) solid-solution alloy nanoparticles (NPs) with well-controlled hexagonal close-packed (hcp) and face-centered cubic (fcc) phases, through the chemical reduction method. The crystal structure control is realized by precisely tunning the reduction speeds of the metal precursors. The effect of the crystal structure on the catalytic performance of solid-solution alloy NPs is systematically investigated. Impressively, all the hcp alloy NPs show superior electrocatalytic activities for the hydrogen evolution reaction in alkaline solution compared with the fcc alloy NPs. In particular, hcp-RuIrPt exhibits extremely high intrinsic (mass) activity, which is 3.1 (3.2) and 6.7 (6.9) times enhanced compared to that of fcc-RuIrPt and commercial Pt/C.

13.
Materials (Basel) ; 15(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35057226

RESUMEN

The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to "freeze" the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in Cu6Sn5 between a Sn-3.0 wt%Ag-0.5 wt%Cu (SAC305) solder alloy and a Cu substrate in situ at temperatures above the solidus of the alloy. This enables the continuous surveillance of rapid grain boundary movements of Cu6Sn5 during soldering and increases the fundamental understanding of reaction mechanisms in solder solid/liquid interfaces.

14.
ACS Nano ; 16(1): 1612-1624, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962778

RESUMEN

Compositional and structural arrangements of constituent elements, especially those at the surface and near-surface layers, are known to greatly influence the catalytic performance of alloyed nanoparticles (NPs). Although much research effort often focuses on the ability to tailor these important aspects in the design stage, their stability under realistic operating conditions remains a major technical challenge. Here, the compositional stability and associated structural evolution of a ternary iridium-palladium-ruthenium (Ir-Pd-Ru) nanoalloy at elevated temperatures have been studied using interrupted in situ scanning transmission electron microscopy and theoretical modeling. The results are based on a combinatory approach of statistical sampling at the sub-nanometer scale for large groups of NPs as well as tracking individual NPs. We find that the solid solution Ir-Pd-Ru NPs (∼5.6 nm) evolved into a Pd-enriched shell supported on an alloyed Ir-Ru-rich core, most notably when the temperature exceeds 500 °C, concurrently with the development of expansive atomic strain in the outer surface and subsurface layers with respect to the core regions. Theoretically, we identify the weak interatomic bonds, low surface energy, and large atomic sizes associated with Pd as the key factors responsible for such observed features.

15.
ACS Mater Au ; 2(2): 110-116, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855761

RESUMEN

The crystal structure, which intrinsically affects the properties of solids, is determined by the constituent elements and composition of solids. Therefore, it cannot be easily controlled beyond the phase diagram because of thermodynamic limitations. Here, we demonstrate the first example of controlling the crystal structures of a solid-solution nanoparticle (NP) entirely without changing its composition and size. We synthesized face-centered cubic (fcc) or hexagonal close-packed (hcp) structured Pd x Ru1-x NPs (x = 0.4, 0.5, and 0.6), although they cannot be synthesized as bulk materials. Crystal-structure control greatly improves the catalytic properties; that is, the hcp-Pd x Ru1-x NPs exceed their fcc counterparts toward the oxygen evolution reaction (OER) in corrosive acid. These NPs only require an overpotential (η) of 200 mV at 10 mA cm-2, can maintain the activity for more than 20 h, greatly outperforming the fcc-Pd0.4Ru0.6 NPs (η = 280 mV, 9 min), and are among the most efficient OER catalysts reported. Synchrotron X-ray-based spectroscopy, atomic-resolution electron microscopy, and density functional theory (DFT) calculations suggest that the enhanced OER performance of hcp-PdRu originates from the high stability against oxidative dissolution.

16.
Nano Lett ; 21(20): 8679-8686, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34644077

RESUMEN

Precise determination of atomic structures in ferroelectric thin films and their evolution with temperature is crucial for fundamental study and design of functional materials. However, this has been impeded by the lack of techniques applicable to a thin-film geometry. Here we use cryogenic scanning transmission electron microscopy (STEM) to observe the atomic structure of a BaTiO3 film on a (111)-SrTiO3 substrate under varying temperatures. Our study explicitly proves a structure transition from a complex polymorphic nanodomain configuration at room temperature transitioning to a homogeneous ground-state rhombohedral structure of BaTiO3 below ∼250 K, which was predicted by phase-field simulation. More importantly, another unexpected transition is revealed, a transition to complex nanodomains below ∼105 K caused by an altered mechanical boundary condition due to the antiferrodistortive phase transition of the SrTiO3 substrate. This study demonstrates the power of cryogenic STEM in elucidating structure-property relationships in numerous functional materials at low temperatures.

17.
Angew Chem Int Ed Engl ; 60(41): 22283-22288, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382312

RESUMEN

We report on Cu/amUiO-66, a composite made of Cu nanoparticles (NPs) and amorphous [Zr6 O4 (OH)4 (BDC)6 ] (amUiO-66, BDC=1,4-benzenedicarboxylate), and Cu-ZnO/amUiO-66 made of Cu-ZnO nanocomposites and amUiO-66. Both structures were obtained via a spray-drying method and characterized using high-resolution transmission electron microscopy, energy dispersive spectra, powder X-ray diffraction and extended X-ray absorption fine structure. The catalytic activity of Cu/amUiO-66 for CO2 hydrogenation to methanol was 3-fold that of Cu/crystalline UiO-66. Moreover, Cu-ZnO/amUiO-66 enhanced the methanol production rate by 1.5-fold compared with Cu/amUiO-66 and 2.5-fold compared with γ-Al2 O3 -supported Cu-ZnO nanocomposites (Cu-ZnO/γ-Al2 O3 ) as the representative hydrogenation catalyst. The high catalytic performance was investigated using in situ Fourier transform IR spectra. This is a first report of a catalyst comprising metal NPs and an amorphous metal-organic framework in a gas-phase reaction.

18.
ACS Nano ; 15(7): 12077-12085, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34232021

RESUMEN

Analysis of subpercent local strain is important for a deeper understanding of nanomaterials, whose properties often depend on the strain. Conventional strain analysis has been performed by measuring interatomic distances from scanning transmission electron microscopy (STEM) images. However, measuring subpercent strain remains a challenge because the peak positions in STEM images do not precisely correspond to the real atomic positions due to disturbing influences, such as random noise and image distortion. Here, we utilized an advanced data-driven analysis method, Gaussian process regression, to predict the true strain distribution by reconstructing the true atomic positions. As a result, a precision of 0.2% was achieved in strain measurement at the atomic scale. The method was applied to gold nanoparticles of different shapes to reveal the shape dependence of the strain distribution. A spherical gold nanoparticle showed a symmetric strain distribution with a contraction of ∼1% near the surface owing to surface relaxation. By contrast, a gold nanorod, which is a cylinder terminated by hemispherical caps on both sides, showed nonuniform strain distributions with lattice expansions of ∼0.5% along the longitudinal axis around the caps except for the contraction at the surface. Our results indicate that the strain distribution depends on the shape of the nanomaterials. The proposed data-driven analysis is a convenient and powerful tool to measure the strain distribution with high precision at the atomic scale.

20.
Chem Commun (Camb) ; 57(48): 5897-5900, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031675

RESUMEN

We first report the facile synthesis of metal-carbon composites consisting of metal nanoparticles (NPs) and different types of carbon species: onion-like and amorphous carbon, Ni@onion-like carbon and Co@amorphous carbon. By simply changing the metal species in an isostructural metal-organic framework, thermal decompositions of MOF-74 directly afforded different types of metal NPs and carbon composites, which exhibited good electrical conductivity. In particular, the Ni@onion-like carbon, having a well-ordered carbon structure, had high electrical conductivity (σ = 5.3 Ω-1 cm-1 at 295 K), explained by a modified model of the Efros-Shklovskii variable range hopping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...