Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 1: 152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30272028

RESUMEN

During plant reproduction, sperm cells are delivered to ovules through growing pollen tubes. This process involves tip-localized receptor kinases regulating integrity and/or guidance of pollen tubes, whose localizations must be strictly regulated. However, the molecular basis for tip-localization of these molecules remains largely elusive. Here we show that a pair of AP180 N-terminal homology domain-containing proteins, PICALM5a and PICALM5b, is responsible for the tip-localization of ANXUR receptor kinases acting in an autocrine signaling pathway required for pollen tube integrity in Arabidopsis thaliana. The picalm5a picalm5b double mutant exhibits reduced fertility, and the double mutant pollen is defective in pollen tube integrity with premature bursts. The tip localization of ANXUR proteins is severely impaired in picalm5a picalm5b pollen tubes, whereas another receptor kinase PRK6 acting in pollen tube guidance is not affected. Based on these results, we propose that PICALM5 proteins serve as specific loading adaptors to recycle ANXUR proteins.

2.
J Cell Sci ; 125(Pt 14): 3412-20, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22467862

RESUMEN

Protein export from the endoplasmic reticulum (ER) to the Golgi apparatus occurs at specialized regions known as the ER exit sites (ERES). In Saccharomyces cerevisiae, ERES appear as numerous scattered puncta throughout the ER. We examined ERES within the peripheral ER, finding that the proteins comprising the ERES localize on high-curvature ER domains where curvature-stabilizing protein Rtn1 is present. Δrtn1 Δrtn2 Δyop1 cells have fewer high-curvature ER domains, but ERES accumulate at the remaining high-curvature ER domains on the edge of expanded ER sheets. We propose that membrane curvature is a key geometric feature for the regulation of ERES localization. We also investigated a spatial relationship between ERES and Golgi cisternae. Golgi cisternae in S. cerevisiae are unstacked, dispersed, and moving in the cytoplasm with cis-cisternae positioned adjacent to ERES, whereas trans-cisternae are not. Morphological changes in the ER of Δrtn1 Δrtn2 Δyop1 cells resulted in aberrant Golgi structures, including cis- and trans-markers, and there was reduced movement at ERES between expanded ER sheets and the plasma membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nature ; 441(7096): 1007-10, 2006 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16699523

RESUMEN

There is a debate over how protein trafficking is performed through the Golgi apparatus. In the secretory pathway, secretory proteins that are synthesized in the endoplasmic reticulum enter the early compartment of the Golgi apparatus called cis cisternae, undergo various modifications and processing, and then leave for the plasma membrane from the late (trans) cisternae. The cargo proteins must traverse the Golgi apparatus in the cis-to-trans direction. Two typical models propose either vesicular transport or cisternal progression and maturation for this process. The vesicular transport model predicts that Golgi cisternae are distinct stable compartments connected by vesicular traffic, whereas the cisternal maturation model predicts that cisternae are transient structures that form de novo, mature from cis to trans, and then dissipate. Technical progress in live-cell imaging has long been awaited to address this problem. Here we show, by the use of high-speed three-dimensional confocal microscopy, that yeast Golgi cisternae do change the distribution of resident membrane proteins from the cis nature to the trans over time, as proposed by the maturation model, in a very dynamic way.


Asunto(s)
Aparato de Golgi/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Mutación , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...