Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 464: 363-85, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18951195

RESUMEN

Proteins involved in chromatin-interacting processes, like gene transcription, DNA replication, and DNA repair, bind directly or indirectly to DNA, leading to their immobilisation. However, to reach their target sites in the DNA the proteins have to somehow move through the nucleus. Fluorescence recovery after photobleaching (FRAP) has been shown to be a strong approach to study exactly these properties, i.e. mobility and (transient) immobilisation of the proteins under investigation. Here, we provide and discuss detailed protocols for some of the FRAP procedures that we have used to study protein behaviour in living cell nuclei. In addition, we provide examples of their application in the investigation of the androgen receptor (AR), a hormone-inducible transcription factor, and of two DNA-maintenance factors, the telomere binding proteins TRF1 and TRF2. We also provide protocols for qualitative FRAP analysis and a general scheme for computer modelling of the presented FRAP procedures that can be used to quantitatively analyse experimental FRAP curves.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas Nucleares/metabolismo , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Nucleares/genética
2.
J Cell Biol ; 177(1): 63-72, 2007 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-17420290

RESUMEN

Steroid receptors regulate gene expression in a ligand-dependent manner by binding specific DNA sequences. Ligand binding also changes the conformation of the ligand binding domain (LBD), allowing interaction with coregulators via LxxLL motifs. Androgen receptors (ARs) preferentially interact with coregulators containing LxxLL-related FxxLF motifs. The AR is regulated at an extra level by interaction of an FQNLF motif in the N-terminal domain with the C-terminal LBD (N/C interaction). Although it is generally recognized that AR coregulator and N/C interactions are essential for transcription regulation, their spatiotemporal organization is largely unknown. We performed simultaneous fluorescence resonance energy transfer and fluorescence redistribution after photobleaching measurements in living cells expressing ARs double tagged with yellow and cyan fluorescent proteins. We provide evidence that AR N/C interactions occur predominantly when ARs are mobile, possibly to prevent unfavorable or untimely cofactor interactions. N/C interactions are largely lost when AR transiently binds to DNA, predominantly in foci partly overlapping transcription sites. AR coregulator interactions occur preferentially when ARs are bound to DNA.


Asunto(s)
Receptores Androgénicos/análisis , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular , ADN/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/análisis , Mapeo de Interacción de Proteínas , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Proteínas Recombinantes de Fusión/análisis
3.
Mol Cell Biol ; 24(12): 5587-94, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169917

RESUMEN

Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction ( approximately 73%) has binding dynamics similar to TRF1 (residence time of approximately 44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of approximately 11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.


Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
4.
Exp Cell Res ; 297(2): 434-43, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15212946

RESUMEN

The critical factors in the regulation of telomere length are not yet clearly defined. Telomerase is a key player in telomere elongation, although previous studies have shown that telomeres are differentially elongated after telomerase reconstitution. Moreover, a clear relation between the level of telomerase activity and telomere length was not observed. To investigate which factors are critical in telomere length regulation, we generated 24 telomerase-reconstituted primary human fibroblast clones. In these clones, in vitro telomerase activity level is clearly related to telomere length. High levels of telomerase activity are associated with longer telomeres and better telomere maintenance over time. The correlation coefficient, however, indicates that the level of telomerase activity is not the only factor in the regulation of telomere length. Clearly, factors that are not measured in an in vitro telomerase activity assay are involved in telomere length regulation in vivo. To investigate which telomerase components are critical in regulating telomerase activity levels, we studied expression levels of hTERT mRNA and hTR. Expression is highly variable between individual clones, but not related to the level of telomerase activity or telomere length. Our results indicate that expression levels of hTERT mRNA and hTR do not regulate the activity level of the telomerase complex, suggesting posttranscriptional modification of hTERT or the presence of additional proteins that modulate telomerase enzyme activity.


Asunto(s)
Fibroblastos/enzimología , Regulación Enzimológica de la Expresión Génica , Telomerasa/análisis , Telómero/metabolismo , Células Cultivadas , Células Clonales , Proteínas de Unión al ADN , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Hibridación Fluorescente in Situ , Proteínas Luminiscentes , Reacción en Cadena de la Polimerasa , ARN , Retroviridae/genética , Piel/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA