Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(5): 743-748, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38600265

RESUMEN

NARROW LEAF1 (NAL1) exerts a multifaceted influence on leaf morphology and crop yield. Recent crystal study proposed that histidine 233 (H233) is part of the catalytic triad. Here we report that unlike suggested previously, H234 instead of H233 is a component of the catalytic triad alongside residues D291 and S385 in NAL1. Remarkably, residue 233 unexpectedly plays a pivotal role in regulating NAL1's proteolytic activity. These findings establish a strong foundation for utilizing NAL1 in breeding programs aimed at improving crop yield.


Asunto(s)
Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Histidina/metabolismo
2.
Viruses ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337039

RESUMEN

The nucleocapsid domain (NCd), located at the C-terminus of the HIV-1 Gag protein, is involved in numerous stages of the replication cycle, such as the packaging of the viral genome and reverse transcription. It exists under different forms through the viral life cycle, depending on the processing of Gag by the HIV-1 protease. NCd is constituted of two adjacent zinc knuckles (ZK1 and ZK2), separated by a flexible linker and flanked by disordered regions. Here, conformational equilibria between a major and two minor states were highlighted exclusively in ZK2, by using CPMG and CEST NMR experiments. These minor states appear to be temperature dependent, and their populations are highest at physiological temperature. These minor states are present both in NCp7, the mature form of NCd, and in NCp9 and NCp15, the precursor forms of NCd, with increased populations. The role of these minor states in the targeting of NCd by drugs and its binding properties is discussed.


Asunto(s)
VIH-1 , Proteínas de la Cápside/metabolismo , VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral/metabolismo , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003650

RESUMEN

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.


Asunto(s)
VIH-1/metabolismo , Ácidos Nucleicos/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , VIH-1/genética , Nucleocápside/metabolismo , Unión Proteica , ARN Viral , Factores de Transcripción , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
4.
J Mol Biol ; 431(10): 1966-1980, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30876916

RESUMEN

A comprehensive view of all the structural aspects related to NCp7 is essential to understand how this protein, crucial in many steps of the HIV-1 cycle, binds and anneals nucleic acids (NAs), mainly thanks to two zinc fingers, ZF1 and ZF2. Here, we inspected the structural properties of the available experimental models of NCp7 bound to either DNA or RNA molecules, or free of ligand. Our analyses included the characterization of the relative positioning of ZF1 and ZF2, accessibility measurements and the exhaustive, quantitative mapping of the contacts between amino acids and nucleotides by a recent tessellation method, VLDM. This approach unveiled the intimate connection between NA binding process and the conformations explored by the free protein. It also provided new insights into the functional specializations of ZF1 and ZF2. The larger accessibility of ZF2 in free NCp7 and the consistency of the ZF2/NA interface in different models and conditions give ZF2 the lead of the binding process. ZF1 contributes to stabilize the complexes through various organizations of the ZF1/NA interface. This work outcome is a global binding scheme of NCp7 to DNA and RNA, and an example of how protein-NA complexes are stabilized.


Asunto(s)
VIH-1/metabolismo , Ácidos Nucleicos/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Infecciones por VIH/virología , VIH-1/química , Humanos , Modelos Moleculares , Ácidos Nucleicos/química , Unión Proteica , Conformación Proteica , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
5.
Biochim Open ; 7: 10-25, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30109196

RESUMEN

An infectious retroviral particle contains 1000-1500 molecules of the nucleocapsid protein (NC) that cover the diploid RNA genome. NC is a small zinc finger protein that possesses nucleic acid chaperone activity that enables NC to rearrange DNA and RNA molecules into the most thermodynamically stable structures usually those containing the maximum number of base pairs. Thanks to the chaperone activity, NC plays an essential role in reverse transcription of the retroviral genome by facilitating the strand transfer reactions of this process. In addition, these reactions are involved in recombination events that can generate multiple drug resistance mutations in the presence of anti-HIV-1 drugs. The strand transfer reactions rely on base pairing of folded DNA/RNA structures. The molecular mechanisms responsible for NC-mediated strand transfer reactions are presented and discussed in this review. Antiretroviral strategies targeting the NC-mediated strand transfer events are also discussed.

6.
Biochemistry ; 57(30): 4562-4573, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30019894

RESUMEN

Due to its essential roles in the viral replication cycle and to its highly conserved sequence, the nucleocapsid protein (NCp7) of the human immunodeficiency virus type 1 is a target of choice for inhibiting replication of the virus. Most NCp7 inhibitors identified so far are small molecules. A small number of short peptides also act as NCp7 inhibitors by competing with its nucleic acid (NA) binding and chaperone activities but exhibit antiviral activity only at relatively high concentrations. In this work, in order to obtain more potent NCp7 competitors, we designed a library of longer peptides (10-17 amino acids) whose sequences include most of the NCp7 structural determinants responsible for its specific NA binding and destabilizing activities. Using an in vitro assay, the most active peptide (pE) was found to inhibit the NCp7 destabilizing activity, with a 50% inhibitory concentration in the nanomolar range, by competing with NCp7 for binding to its NA substrates. Formulated with a cell-penetrating peptide (CPP), pE was found to accumulate into HeLa cells, with low cytotoxicity. However, either formulated with a CPP or overexpressed in cells, pE did not show any antiviral activity. In vitro competition experiments revealed that its poor antiviral activity may be partly due to its sequestration by cellular RNAs. The selected peptide pE therefore appears to be a useful tool for investigating NCp7 properties and functions in vitro, but further work will be needed to design pE-derived peptides with antiviral activity.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Diseño de Fármacos , VIH-1/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Secuencia de Aminoácidos , Evaluación Preclínica de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/química , VIH-1/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Nucleic Acids Res ; 46(18): 9699-9710, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986076

RESUMEN

During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.


Asunto(s)
VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Virión/metabolismo , Ensamble de Virus/fisiología , VIH-1/genética , Humanos , Conformación de Ácido Nucleico , Multimerización de Proteína/fisiología , ARN Viral/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Biomol NMR Assign ; 12(1): 139-143, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29332151

RESUMEN

During HIV-1 assembly, the Pr55Gag polyprotein precursor (Gag) interacts with the genomic RNA, with lipids of the plasma membrane, with host proteins (ALIX, TSG101) through the ESCRT complex, with the viral protein Vpr and are involved in intermolecular interactions with other Pr55Gag proteins. This network of interactions is responsible for the formation of the viral particle, the selection of genomic RNA and the packaging of Vpr. The C-terminal domain of Gag encompassed in NCp15 is involved in the majority of these interactions, either by its nucleocapsid or its p6 domains. We study the NCp15 protein as a model of the C-terminal domain of Gag to better understand the role of this domain in the assembly and budding of HIV-1. Here, we report the 1H, 13C and 15N chemical shift assignments of NCp15 obtained by heteronuclear multidimensional NMR spectroscopy as well as the analysis of its secondary structure in solution. These assignments of NCp15 pave the way for interaction studies with its numerous partners.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Precursores de Proteínas/química , Dominios Proteicos
9.
J Phys Chem B ; 121(50): 11249-11261, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29172512

RESUMEN

Recently, a 3-hydroxychromone based nucleoside 3HCnt has been developed as a highly environment-sensitive nucleoside surrogate to investigate protein-DNA interactions. When it is incorporated in DNA, the probe is up to 50-fold brighter than 2-aminopurine, the reference fluorescent nucleoside. Although the insertion of 3HCnt in DNA was previously shown to not alter the overall DNA structure, the possibility of the probe inducing local effects cannot be ruled out. Hence, a systematic structural and dynamic study is required to unveil the 3HCnt's limitations and to properly interpret the data obtained with this universal probe. Here, we investigated by NMR a 12-mer duplex, in which a central adenine was replaced by 3HCnt. The chemical shifts variations and nOe contacts revealed that the 3HCnt is well inserted in the DNA double helix with extensive stacking interactions with the neighbor base pairs. These observations are in excellent agreement with the steady-state and time-resolved fluorescence properties indicating that the 3HCnt fluorophore is protected from the solvent and does not exhibit rotational motion. The 3HCnt insertion in DNA is accompanied by the extrusion of the opposite nucleobase from the double helix. Molecular dynamics simulations using NMR-restraints demonstrated that 3HCnt fluorophore exhibits only translational dynamics. Taken together, our data showed an excellent intercalation of 3HCnt in the DNA double helix, which is accompanied by localized perturbations. This confirms 3HCnt as a highly promising tool for nucleic acid labeling and sensing.


Asunto(s)
Cromonas/química , ADN/química , Fluorescencia , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
10.
Bioorg Med Chem Lett ; 27(11): 2506-2509, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400233

RESUMEN

SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature for RNA secondary structure determination. However, to the best of our knowledge, the structure of 2'-O-acylation products has never been confirmed by NMR or X-ray data. We have realized the acylation reactions between cNMP and NMIA under SHAPE chemistry conditions and identified the acylation products using standard NMR spectroscopy and LC-MS/MS experiments. For cAMP and cGMP, the major acylation product is the 2'-O-acylated compound (>99%). A trace amount of N-acylated cAMP has also been identified by LC-UV-MS2. While for cCMP, the isolated acylation products are composed of 96% of 2'-O-acylated, 4% of N,O-diacylated, and trace amount of N-acylated compounds. In addition, the characterization of the major 2'-O-acylated compound by NMR showed slight differences in the conformation of the acylated sugar between the three cyclic nucleotides. This interesting result should be useful to explain some unexpected reactivity of the SHAPE chemistry.


Asunto(s)
Nucleótidos/química , Acilación , Espectroscopía de Resonancia Magnética , Nitrosaminas/química , Conformación de Ácido Nucleico , ARN/química , Espectrometría de Masas en Tándem
11.
Sci Rep ; 7: 43954, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266653

RESUMEN

Werner syndrome is caused by mutations in the WRN gene encoding WRN helicase. A knowledge of WRN helicase's DNA unwinding mechanism in vitro is helpful for predicting its behaviors in vivo, and then understanding their biological functions. In the present study, for deeply understanding the DNA unwinding mechanism of WRN, we comprehensively characterized the DNA unwinding properties of chicken WRN helicase core in details, by taking advantages of single-molecule fluorescence resonance energy transfer (smFRET) method. We showed that WRN exhibits repetitive DNA unwinding and translocation behaviors on different DNA structures, including forked, overhanging and G-quadruplex-containing DNAs with an apparently limited unwinding processivity. It was further revealed that the repetitive behaviors were caused by reciprocating of WRN along the same ssDNA, rather than by complete dissociation from and rebinding to substrates or by strand switching. The present study sheds new light on the mechanism for WRN functioning.


Asunto(s)
Pollos , ADN Helicasas/metabolismo , ADN/metabolismo , Helicasa del Síndrome de Werner/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Imagen Individual de Molécula
12.
Sci Rep ; 7: 42865, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28216645

RESUMEN

3'-5' exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3'-5' exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3'-to-5' polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases.


Asunto(s)
Candida albicans/enzimología , ADN Helicasas/química , ADN Helicasas/metabolismo , Exonucleasas/metabolismo , Secuencia de Aminoácidos , Candida albicans/química , Secuencia Conservada , Exonucleasas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrólisis , Magnesio/metabolismo , Dominios Proteicos
13.
J Am Chem Soc ; 139(6): 2520-2528, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28112929

RESUMEN

DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Citosina/metabolismo , ADN/metabolismo , Termodinámica , Proteínas Potenciadoras de Unión a CCAAT/química , Citosina/química , ADN/química , Metilación de ADN , Replicación del ADN , Fluorescencia , Humanos , Cinética , Estructura Molecular , Ubiquitina-Proteína Ligasas
14.
Nucleic Acids Res ; 44(7): 3432-47, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26883628

RESUMEN

Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3'-H3' and C4'-H4' vectors are correlated to the(31)P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2' and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinterare mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5' and 3' ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.


Asunto(s)
ADN Forma B/química , Desoxirribonucleótidos/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
15.
RNA ; 22(4): 506-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826129

RESUMEN

The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59.


Asunto(s)
VIH-1/genética , ARN Viral/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Secuencia de Bases , Secuencias Invertidas Repetidas , Cinética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estabilidad del ARN , Elementos de Respuesta
16.
J Biol Chem ; 291(7): 3468-82, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26668324

RESUMEN

An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).


Asunto(s)
Codón de Terminación , ADN de Cadena Simple/química , ADN Viral/química , VIH-1/metabolismo , Modelos Moleculares , Proteínas de la Nucleocápside/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Sitios de Unión , ADN Recombinante/química , ADN Recombinante/aislamiento & purificación , ADN Recombinante/metabolismo , ADN de Cadena Simple/aislamiento & purificación , ADN de Cadena Simple/metabolismo , ADN Viral/aislamiento & purificación , ADN Viral/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Cinética , Peso Molecular , Mutación , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Filogenia , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Biochemistry ; 53(35): 5601-12, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25102280

RESUMEN

We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.


Asunto(s)
ADN Forma B/química , Nucleosomas/química , Secuencia de Bases , ADN Forma B/genética , Humanos , Sustancias Macromoleculares/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética
18.
PLoS One ; 9(7): e102150, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25029439

RESUMEN

The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.


Asunto(s)
ADN/metabolismo , VIH-1 , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , ARN/metabolismo , Dedos de Zinc , Modelos Moleculares , Rotación
19.
Virus Res ; 193: 2-15, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24907482

RESUMEN

This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Retroviridae/fisiología , Animales , Antivirales/farmacología , Proteínas Portadoras/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Nucleocápside/antagonistas & inhibidores , Nucleocápside/metabolismo , Proteínas de la Nucleocápside/genética , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Retroviridae/efectos de los fármacos , Transcripción Reversa , Ribonucleoproteínas/metabolismo , Ensamble de Virus
20.
Nucleic Acids Res ; 42(2): 1065-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24153111

RESUMEN

The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44-61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44-61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure-activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44-61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44-61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.


Asunto(s)
Duplicado del Terminal Largo de VIH , VIH-1 , Transcripción Reversa , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA