Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 895: 148011, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979949

RESUMEN

Recurrent pregnancy loss (RPL) is a common but complex complication in fertility conditions, affecting about 15-20% of couples. Although several causes have been proposed for RPL, it occurs in about 35-60% of cases without a known explanation. A strong assumption is that genetic factors play a role in the etiology and pathophysiology of PRL. Therefore, several genes are proposed as candidates in the pathogenesis of RPL. The current study aimed to investigate the effects of nucleotide changes in the THBD (thrombomodulin) gene as an RPL-related candidate gene. This gene encodes a cell receptor for thrombin and is involved in reproductive loss in RPL cases. Its involvement in the natural anticoagulant system has been extensively studied. By genetic screening of the entire coding and noncoding regions of the THBD gene, we found twenty-seven heterozygous and homozygous nucleotide changes. Ten of them led to amino acid substitutions, seven variants were identified in the promoter region, and eight of them occurred in 3'UTR. Potentially, the pathogenicity effects of these variations on THBD protein were evaluated by several prediction tools. The numerous genomic variations prompted noticeable modifications of the protein's structural and functional properties. Furthermore, in-silico scores were consistent with deleterious effects for these mutations. The results of this study provide genetic information that will be useful in the future for clinicians, scientists, and students to understand the unknown causes of RPL better. It may also pave the way for developing diagnostic/prognostic approaches to help treat PRL patients.


Asunto(s)
Aborto Habitual , Trombomodulina , Humanos , Femenino , Estudios de Casos y Controles , Adulto , Persona de Mediana Edad , Aborto Habitual/genética , Trombomodulina/química , Trombomodulina/genética , Análisis Mutacional de ADN , Secuencia de Aminoácidos
2.
EXCLI J ; 21: 1306-1330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483916

RESUMEN

Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of respiratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart disease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously reported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) encoding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 patients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD patients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...