Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(4): 1458-1476, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783402

RESUMEN

Elevated atmospheric CO2 (eCO2 ) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO2 and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO2 (ambient, aCO2 plus 200 ppm) for 15-17 years, combined with annual nitrogen amendments (11.2 g N m-2 ) for 6 years. Allometric equations were developed following harvest to estimate coarse root (>2 mm diameter) biomass. Pine root biomass under eCO2 increased 32%, 1.80 kg m-2 above the 5.66 kg m-2 observed in aCO2 , largely accumulating in the top 30 cm of soil. In contrast, eCO2 increased broadleaved root biomass more than twofold (aCO2 : 0.81, eCO2 : 2.07 kg m-2 ), primarily accumulating in the 30-60 cm soil depth. Combined, pine and broadleaved root biomass increased 3.08 kg m-2 over aCO2 of 6.46 kg m-2 , a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO2 increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO2 . A sustained increase in root NPP under eCO2 over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO2 . These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.


Asunto(s)
Nitrógeno , Pinus taeda , Biomasa , Dióxido de Carbono , Suelo
2.
Glob Chang Biol ; 24(10): 4841-4856, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29949220

RESUMEN

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2 ] enrichment (ECO2 ; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a one-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model-data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.


Asunto(s)
Dióxido de Carbono/metabolismo , Bosques , Pinus taeda/metabolismo , Transpiración de Plantas , Suelo/química , Agua/metabolismo , Ecosistema , Hojas de la Planta/fisiología
3.
Front Plant Sci ; 9: 30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416547

RESUMEN

An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

4.
Sci Total Environ ; 628-629: 611-620, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454202

RESUMEN

Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUEmax) was developed to detect losses of ecosystem function globally. Three global GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were used to develop annual global RUE datasets for 2001-2011. Large, well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results show that extreme drought-induced loss of ecosystem function could impact 0.9% ±â€¯0.1% of earth's vegetated land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional loss (0.14 ±â€¯0.03 PgC/yr) could explain >70% of the interannual variation in GPP in drought-affected areas (p ≤ 0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipitation variability and dry land expansion expected in the future.

5.
Sci Total Environ ; 644: 1511-1524, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743864

RESUMEN

Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. During the last century, agricultural expansion into native grasslands was extensive, particularly managed pasture or winter wheat. In this study, we measured carbon dioxide (CO2) and water vapor (H2O) fluxes from winter wheat and tallgrass prairie sites in Central Oklahoma using the eddy covariance in 2015 and 2016. The objective of this study was to contrast CO2 and H2O fluxes between these two ecosystems to provide insights on the impacts of conversion of tallgrass prairie to winter wheat on carbon and water budgets. Daily net ecosystem CO2 exchange (NEE) reached seasonal peaks of -9.4 and -8.8 g C m-2 in 2015 and -6.2 and -7.5 g C m-2 in 2016 at winter wheat and tall grass prairie sites, respectively. Both sites were net sink of carbon during their growing seasons. At the annual scale, the winter wheat site was a net source of carbon (56 ±â€¯13 and 33 ±â€¯9 g C m-2 year-1 in 2015 and 2016, respectively). In contrast, the tallgrass prairie site was a net sink of carbon (-128 ±â€¯69 and -119 ±â€¯53 g C m-2 year-1 in 2015 and 2016, respectively). Daily ET reached seasonal maximums of 6.0 and 5.3 mm day-1 in 2015, and 7.2 and 8.2 mm day-1 in 2016 at the winter wheat and tallgrass prairie sites, respectively. Although ecosystem water use efficiency (EWUE) was higher in winter wheat than in tallgrass prairie at the seasonal scale, summer fallow contributed higher water loss from the wheat site per unit of carbon fixed, resulting into lower EWUE at the annual scale. Results indicate that the differences in magnitudes and patterns of fluxes between the two ecosystems can influence carbon and water budgets.


Asunto(s)
Dióxido de Carbono/análisis , Monitoreo del Ambiente , Pradera , Agricultura , Oklahoma , Estaciones del Año , Triticum
6.
Glob Chang Biol ; 23(9): 3501-3512, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28380283

RESUMEN

We evaluated the effect on soil CO2 efflux (FCO2 ) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2 ) ranging 1.0-1.8 times ambient did not affect FCO2 . FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2 . The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on FCO2 .


Asunto(s)
Dióxido de Carbono , Ecosistema , Suelo/química , Fotosíntesis , Hojas de la Planta
7.
Front Plant Sci ; 7: 1346, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27725821

RESUMEN

A clear understanding of hydraulic regulation in cultivated plants is crucial for addressing challenges to forest water cycling due to climate changes in low subtropical China. Experiments were conducted to determine the hydrologic balance of a Eucalyptus urophylla plantation in response to periodic drought. Trees displayed lower stomatal conductance (GS) and leaf water potentials (ΨL) during the dry periods. A decrease of 22.4% was found for the maximum reference GS (GS at D = 1 kPa; GSref-max). Accordingly, specific hydraulic conductivity (ks) decreased by 45.3 - 65.6% from the wet to the dry season, depending on the tree size. Fairly stable leaf stomatal conductance (gs) with decreasing ΨL (ΨL < -1.6 MPa) contributed to the high water-use efficiency (WUE) of this Eucalyptus species. Additionally, the lower stomatal sensitivity (-m = 0.53) in the dry season might also be responsible for the high WUE, since we found an anisohydric behavior that was associated with photosynthetically active radiation (Q0). Larger trees were found to use water more efficiently than small trees, due to the higher sensitivity of ks to decreasing ΨL. This was also verified by the decreasing leaf carbon isotope discrimination (Δ13C) with increasing tree diameter. However, further studies are needed to determine the universality of these results for other Eucalyptus species in this region.

8.
New Phytol ; 205(2): 518-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25346045

RESUMEN

Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 µmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.


Asunto(s)
Dióxido de Carbono/metabolismo , Bosques , Transpiración de Plantas , Atmósfera/química , Modelos Biológicos , Estomas de Plantas/metabolismo
9.
New Phytol ; 203(3): 883-99, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844873

RESUMEN

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


Asunto(s)
Aire/análisis , Dióxido de Carbono/análisis , Carbono/análisis , Ecosistema , Bosques , Modelos Teóricos , Árboles/química , Biomasa , Simulación por Computador , Madera/fisiología
10.
Glob Chang Biol ; 20(4): 1146-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24115580

RESUMEN

Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Suelo , Árboles , Dióxido de Carbono/farmacología , North Carolina , Pinus taeda , Hojas de la Planta , Suelo/química , Temperatura , Agua
11.
Tree Physiol ; 33(2): 135-51, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243030

RESUMEN

In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.


Asunto(s)
Dióxido de Carbono/metabolismo , Liquidambar/fisiología , Nitrógeno/metabolismo , Pinus taeda/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Fertilizantes , Liquidambar/crecimiento & desarrollo , Modelos Teóricos , Fotosíntesis/fisiología , Pinus taeda/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/crecimiento & desarrollo , Suelo , Factores de Tiempo , Árboles , Presión de Vapor , Agua/fisiología , Madera
12.
New Phytol ; 197(2): 544-554, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23215904

RESUMEN

Elevated CO2 increases intrinsic water use efficiency (WUE(i) ) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used δ¹³C to assess carbon isotope discrimination and changes in water-use efficiency, while direct CO2 effects on stomatal conductance were explored using δ¹8O as a proxy. Across all the sites, elevated CO2 increased ¹³C-derived water-use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water-use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modelling elevated CO2 and climate impacts on forest productivity, carbon and water balances.


Asunto(s)
Aire/análisis , Dióxido de Carbono/farmacología , Árboles/efectos de los fármacos , Árboles/fisiología , Agua/metabolismo , Isótopos de Carbono , Clima , Italia , North Carolina , Isótopos de Oxígeno , Presión Parcial , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Análisis de Regresión , Tennessee , Factores de Tiempo
14.
Tree Physiol ; 32(4): 373-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22447283

RESUMEN

Establishing quantitative links between plant hydraulic properties and the response of transpiration to environmental factors such as atmospheric vapor pressure deficit (D) is essential for improving our ability to understand plant water relations across a wide range of species and environmental conditions. We studied stomatal responses to D in irrigated trees in the urban landscape of Los Angeles, California. We found a strong linear relationship between the sensitivity of tree-level transpiration estimated from sap flux (m(T); slope of the relationship between tree transpiration and ln D) and transpiration at D=1 kPa (E(Tref)) that was similar to previous surveys of stomatal behavior in natural environments. In addition, m(T) was significantly related to vulnerability to cavitation of branches (P(50)). While m(T) did not appear to differ between ring- and diffuse-porous species, the relationship between m(T) and P(50) was distinct by wood anatomy. Therefore, our study confirms systematic differences in water relations in ring- versus diffuse-porous species, but these differences appear to be more strongly related to the relationship between stomatal sensitivity to D and vulnerability to cavitation rather than to stomatal sensitivity per se.


Asunto(s)
Clima , Estomas de Plantas/fisiología , Transpiración de Plantas , Estrés Fisiológico , Árboles/fisiología , Agua , Xilema/fisiología , Los Angeles , Floema , Presión de Vapor , Madera
15.
Ecol Appl ; 21(3): 661-77, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639035

RESUMEN

Despite its importance for urban planning, landscape management, and water management, there are very few in situ estimates of urban-forest transpiration. Because urban forests contain an unusual and diverse mix of species from many regions worldwide, we hypothesized that species composition would be a more important driver of spatial variability in urban-forest transpiration than meteorological variables in the Los Angeles (California, USA) region. We used constant-heat sap-flow sensors to monitor urban tree water use for 15 species at six locations throughout the Los Angeles metropolitan area. For many of these species no previous data on sap flux, water use, or water relations were available in the literature. To scale sap-flux measurements to whole trees we conducted a literature survey of radial trends in sap flux across multiple species and found consistent relationships for angiosperms vs. gymnosperms. We applied this relationship to our measurements and estimated whole-tree and plot-level transpiration at our sites. The results supported very large species differences in transpiration, with estimates ranging from 3.2 +/- 2.3 kg x tree(-1) x d(-1) in unirrigated Pinus canariensis (Canary Island pine) to 176.9 +/- 75.2 kg x tree(-1) x d(-1) in Platanus hybrida (London planetree) in the month of August. Other species with high daily transpiration rates included Ficus microcarpa (laurel fig), Gleditsia triacanthos (honeylocust), and Platanus racemosa (California sycamore). Despite irrigation and relatively large tree size, Brachychiton populneas (kurrajong), B. discolor (lacebark), Sequoia sempervirens (redwood), and Eucalyptus grandis (grand Eucalyptus) showed relatively low rates of transpiration, with values < 45 kg x tree(-1) x d(-1). When scaled to the plot level, transpiration rates were as high as 2 mm/d for sites that contained both species with high transpiration rates and high densities of planted trees. Because plot-level transpiration is highly dependent on tree density, we modeled transpiration as a function of both species and density to evaluate a likely range of values in irrigated urban forests. The results show that urban forests in irrigated, semi-arid regions can constitute a significant use of water, but water use can be mitigated by appropriate selection of site, management method, and species.


Asunto(s)
Ciudades , Ecosistema , Transpiración de Plantas/fisiología , Árboles/fisiología , Monitoreo del Ambiente , Los Angeles , Agua/metabolismo
16.
Plant Cell Environ ; 34(8): 1384-400, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21486308

RESUMEN

Trees planted in urban landscapes in southern California are often exposed to an unusual combination of high atmospheric evaporative demand and moist soil conditions caused by irrigation. The water relations of species transplanted into these conditions are uncertain. We investigated the water relations of coast redwood (Sequoia sempervirens) planted in the urbanized semi-arid Los Angeles Basin, where it often experiences leaf chlorosis and senescence. We measured the sap flux (J(O)) and hydraulic properties of irrigated trees at three sites in the Los Angeles region. We observed relatively strong stomatal regulation in response to atmospheric vapour pressure deficit (D; J(O) saturated at D < 1 kPa), and a linear response of J(O) to photosynthetically active radiation. Total tree water use by coast redwood was relatively low, with plot-level transpiration rates below 1 mm d(-1) . There was some evidence of xylem cavitation during the summer, which appeared to be reversed in fall and early winter. We conclude that water stress was not a direct factor in causing leaf chlorosis and senescence as has been proposed. Instead, the relatively strong stomatal control that is adaptive in the native habitat of coast redwood may lead to carbon limitation and other stresses in semi-arid, irrigated habitats.


Asunto(s)
Transpiración de Plantas/fisiología , Sequoia/fisiología , Riego Agrícola , Transporte Biológico , Fenómenos Biofísicos , California , Clorofila , Clima , Ecosistema , Los Angeles , Fotosíntesis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Suelo , Agua , Xilema/fisiología
17.
Ecol Lett ; 14(4): 349-57, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21303437

RESUMEN

The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO2 as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Árboles/crecimiento & desarrollo , Biomasa , Ciclo del Carbono , Clima , Ecosistema , Ciclo del Nitrógeno , North Carolina , Raíces de Plantas , Microbiología del Suelo
18.
Tree Physiol ; 30(8): 1001-15, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20566583

RESUMEN

Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here, we study the role of variations in root and branch maximum hydraulic specific conductivity (k(s-max)) under high and low soil moisture in determining whole-tree hydraulic conductance (K(tree)) and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO2 (CO2(a) and CO2(e)). We hypothesized that K(tree) would adjust to CO2(e) through an increase in root and branch k(s-max) in response to anatomical adjustments. However, physiological changes observed under CO2(e) were not clearly related to structural change in the xylem of any of the species. The only large effect of CO2(e) occurred in branches of Liquidambar styraciflua L. and Cornus florida L. where an increase in k(s-max) and a decrease in xylem resistance to embolism (-P50) were measured. Across species, embolism in roots explained the loss of K(tree) and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of G(s-ref), the sap-flux-scaled mean canopy stomatal conductance at a reference vapour pressure deficit of 1 kPa. Across roots and branches, the increase in k(s-max) was associated with a decrease in -P50, a consequence of structural acclimation such as larger conduits, lower pit resistance and lower wood density. Across species, treatment-induced changes in K(tree) translated to similar variation in G(s-ref). However, the relationship between G(s-ref) and K(tree) under CO2(a) was steeper than under CO2(e), indicating that CO2(e) trees have lower G(s-ref) at a given K(tree) than CO2(a) trees. Under high soil moisture, CO2(e) greatly reduced G(s-ref). Under low soil moisture, CO2(e) reduced G(s-ref) of only L. styraciflua and Ulmus alata. In some species, higher xylem dysfunction under CO2(e) might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and anatomical mechanisms underpinning the responses of tree species to drought and more generally to global change.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Raíces de Plantas/fisiología , Árboles/clasificación , Árboles/fisiología , Agua/fisiología , Aclimatación , Atmósfera/química , Dióxido de Carbono/química , Conductividad Eléctrica , Estomas de Plantas/fisiología , Factores de Tiempo , Árboles/genética
19.
New Phytol ; 185(2): 514-28, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19895671

RESUMEN

*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of plant C. *Discrepancy between heights measured for this study and previously calculated heights required revision of earlier allometrically based biomass determinations, resulting in higher (up to 50%) estimates of standing biomass and net primary productivity than previous assessments. *Generally, elevated [CO(2)] caused sustained increases in plant biomass production and in standing C, but did not affect the partitioning of C among plant biomass pools. Spatial variation in net primary productivity and its [CO(2)]-induced enhancement was controlled primarily by N availability, with the difference between precipitation and potential evapotranspiration explaining most interannual variability. Consequently, [CO(2)]-induced net primary productivity enhancement ranged from 22 to 30% in different plots and years. *Through quantifying the effects of nutrient and water availability on the forest productivity response to elevated [CO(2)], we show that net primary productivity enhancement by elevated [CO(2)] is not uniform, but rather highly dependent on the availability of other growth resources.


Asunto(s)
Biomasa , Dióxido de Carbono/fisiología , Carbono/fisiología , Nitrógeno/fisiología , Fotosíntesis/fisiología , Árboles/fisiología , Agua/fisiología , Transpiración de Plantas , Lluvia , Árboles/crecimiento & desarrollo
20.
Proc Natl Acad Sci U S A ; 103(51): 19362-7, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17159142

RESUMEN

The partitioning among carbon (C) pools of the extra C captured under elevated atmospheric CO2 concentration ([CO2]) determines the enhancement in C sequestration, yet no clear partitioning rules exist. Here, we used first principles and published data from four free-air CO2 enrichment (FACE) experiments on forest tree species to conceptualize the total allocation of C to below ground (TBCA) under current [CO2] and to predict the likely effect of elevated [CO2]. We show that at a FACE site where leaf area index (L) of Pinus taeda L. was altered through nitrogen fertilization, ice-storm damage, and droughts, changes in L, reflecting the aboveground sink for net primary productivity, were accompanied by opposite changes in TBCA. A similar pattern emerged when data were combined from the four FACE experiments, using leaf area duration (LD) to account for differences in growing-season length. Moreover, elevated [CO2]-induced enhancement of TBCA in the combined data decreased from approximately 50% (700 g C m(-2) y(-1)) at the lowest LD to approximately 30% (200 g C m(-2) y(-1)) at the highest LD. The consistency of the trend in TBCA with L and its response to [CO2] across the sites provides a norm for predictions of ecosystem C cycling, and is particularly useful for models that use L to estimate components of the terrestrial C balance.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecosistema , Fotosíntesis/fisiología , Pinus/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Atmósfera/química , Dióxido de Carbono/análisis , Modelos Biológicos , North Carolina , Hojas de la Planta/anatomía & histología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA