Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071280

RESUMEN

BONCAT (Biorthogonal noncanonical amino acid tagging) is a labeling strategy that covalently adds a biotin-alkyne (BA) to methionine analogs via a click reaction. When methionine analogs are incorporated into a proteome, enrichment of the BA-labeled proteins allows the detection of newly synthesized proteins (NSP) by mass spectrometry. We previously reported that using our Direct Detection of Biotin-containing Tags (DidBIT) strategy, protein identifications and confidence are increased by enriching for BA-peptides instead of BA-proteins. We compared cleavable BA (DADPS) and uncleavable BA in the identification and TMT quantification of NSP. More than fifty percent more proteins were identified and quantified using DADPS than with uncleavable BA. Interrogation of the data revealed that multiple factors are responsible for the superior performance of DADPS.

2.
bioRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38979362

RESUMEN

Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related processes. We identified Emerin as the top activity-induced candidate plasticity protein and demonstrated that its rapid activity-induced synthesis is transcription-independent. In contrast to its nuclear localization and function in myocytes, activity-induced neuronal Emerin is abundant in the endoplasmic reticulum and broadly inhibits protein synthesis, including translation regulators and synaptic proteins. Downregulating Emerin shifted the dendritic spine population from predominantly mushroom morphology to filopodia and decreased network connectivity. In mice, decreased Emerin reduced visual response magnitude and impaired visual information processing. Our findings support an experience-dependent feed-forward role for Emerin in temporally gating neuronal plasticity by negatively regulating translation.

4.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38266644

RESUMEN

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Fosforilación , Encéfalo/metabolismo , Neuronas/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Piruvatos/metabolismo , Genes Inmediatos-Precoces
5.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681413

RESUMEN

Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.


Asunto(s)
Neoplasias Óseas , Osteoartritis , Humanos , Animales , Ratones , Factor 4 Similar a Kruppel , Osteoartritis/tratamiento farmacológico , Inflamación , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
6.
Res Sq ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546719

RESUMEN

Oligomerization of proteins and their modified forms (proteoforms) produces functional protein complexes 1,2. Complexoforms are complexes that consist of the same set of proteins with different proteoforms 3. The ability to characterize these assemblies within cells is critical to understanding the molecular mechanisms involved in disease and to designing effective drugs. An outstanding biological question is how proteoforms drive function and oligomerization of complexoforms. However, tools to define endogenous proteoform-proteoform/ligand interactions are scarce 4. Here, we present a native top-down proteomics (nTDP) strategy that combines size-exclusion chromatography, nano liquid-chromatography in direct infusion mode, field asymmetric ion mobility spectrometry, and multistage mass spectrometry to identify protein assemblies (≤70 kDa) in breast cancer cells and in cells that overexpress EGFR, a resistance model of estrogen receptor-α (ER-α) targeted therapies. By identifying ~104 complexoforms from 17 protein complexes, our nTDP approach revealed several molecular features of the breast cancer proteome, including EGFR-induced dissociation of nuclear transport factor 2 (NUTF2) assemblies that modulate ER activity. Our findings show that the K4 and K55 posttranslational modification sites discovered with nTDP differentially impact the effects of NUTF2 on the inhibition of the ER signaling pathway. By characterizing endogenous proteoform-proteoform/ligand interactions, we reveal the molecular diversity of complexoforms, which allows us to propose a model for ER drug discovery in the context of designing effective inhibitors to selectively bind and disrupt the actions of targeted ER complexoforms.

7.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397995

RESUMEN

Numerous studies have investigated changes in protein expression at the system level using proteomic mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels exposed lysine, and have now extended the method to whole intact animals to measure surface accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, kidney, muscle, and spleen.

8.
bioRxiv ; 2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37066274

RESUMEN

Perineuronal nets (PNN), a specialized form of ECM (?), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesis that PNNs serve as gatekeepers that guard and protect synaptic territory, and thus may stabilize an engram circuit. We present high-resolution, and 3D EM images of PNN- engulfed neurons showing that synapses occupy the PNN holes, and that invasion of other cellular components are rare. PNN constituents are long-lived and can be eroded faster in an enriched environment, while synaptic proteins have high turnover rate. Preventing PNN erosion by using pharmacological inhibition of PNN-modifying proteases or MMP9 knockout mice allowed normal fear memory acquisition but diminished remote-memory stabilization, supporting the above hypothesis. Significance: In this multidisciplinary work, we challenge the hypothesis that the pattern of holes in the perineuronal nets (PNN) hold the code for very-long-term memories. The scope of this work might lead us closer to the understanding of how we can vividly remember events from childhood to death bed. We postulate that the PNN holes hold the code for the engram. To test this hypothesis, we used three independent experimental strategies; high-resolution 3D electron microscopy, Stable Isotop Labeling in Mammals (SILAM) for proteins longevity, and pharmacologically and genetically interruption of memory consolidation in fear conditioning experiments. All of these experimental results did not dispute the PNN hypothesis.

9.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993270

RESUMEN

For decades, the expression of immediate early genes (IEGs) such as c- fos has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity (i.e., inhibition). Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected neuronal inhibition across the brain induced by a wide range of factors including general anesthesia, sensory experiences, and natural behaviors. Thus, as an in vivo marker for neuronal inhibition, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.

10.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168169

RESUMEN

Genetic analyses of Schizophrenia (SCZ) patients have identified thousands of risk factors. In silico protein-protein interaction (PPI) network analysis has provided strong evidence that disrupted PPI networks underlie SCZ pathogenesis. In this study, we performed in vivo PPI analysis of several SCZ risk factors in the rodent brain. Using endogenous antibody immunoprecipitations coupled to mass spectrometry (MS) analysis, we constructed a SCZ network comprising 1612 unique PPI with a 5% FDR. Over 90% of the PPI were novel, reflecting the lack of previous PPI MS studies in brain tissue. Our SCZ PPI network was enriched with known SCZ risk factors, which supports the hypothesis that an accumulation of disturbances in selected PPI networks underlies SCZ. We used Stable Isotope Labeling in Mammals (SILAM) to quantitate phencyclidine (PCP) perturbations in the SCZ network and found that PCP weakened most PPI but also led to some enhanced or new PPI. These findings demonstrate that quantitating PPI in perturbed biological states can reveal alterations to network biology.

11.
J Neurosci ; 42(42): 7900-7920, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261270

RESUMEN

Neuronal activity initiates signaling cascades that culminate in diverse outcomes including structural and functional neuronal plasticity, and metabolic changes. While studies have revealed activity-dependent neuronal cell type-specific transcriptional changes, unbiased quantitative analysis of cell-specific activity-induced dynamics in newly synthesized proteins (NSPs) synthesis in vivo has been complicated by cellular heterogeneity and a relatively low abundance of NSPs within the proteome in the brain. Here we combined targeted expression of mutant MetRS (methionine tRNA synthetase) in genetically defined cortical glutamatergic neurons with tight temporal control of treatment with the noncanonical amino acid, azidonorleucine, to biotinylate NSPs within a short period after pharmacologically induced seizure in male and female mice. By purifying peptides tagged with heavy or light biotin-alkynes and using direct tandem mass spectrometry detection of biotinylated peptides, we quantified activity-induced changes in cortical glutamatergic neuron NSPs. Seizure triggered significant changes in ∼300 NSPs, 33% of which were decreased by seizure. Proteins mediating excitatory and inhibitory synaptic plasticity, including SynGAP1, Pak3, GEPH1, Copine-6, and collybistin, and DNA and chromatin remodeling proteins, including Rad21, Smarca2, and Ddb1, are differentially synthesized in response to activity. Proteins likely to play homeostatic roles in response to activity, such as regulators of proteastasis, intracellular ion control, and cytoskeleton remodeling proteins, are activity induced. Conversely, seizure decreased newly synthetized NCAM, among others, suggesting that seizure induced degradation. Overall, we identified quantitative changes in the activity-induced nascent proteome from genetically defined cortical glutamatergic neurons as a strategy to discover downstream mediators of neuronal plasticity and generate hypotheses regarding their function.SIGNIFICANCE STATEMENT Activity-induced neuronal and synaptic plasticity are mediated by changes in the protein landscape, including changes in the activity-induced newly synthesized proteins; however, identifying neuronal cell type-specific nascent proteome dynamics in the intact brain has been technically challenging. We conducted an unbiased proteomic screen from which we identified significant activity-induced changes in ∼300 newly synthesized proteins in genetically defined cortical glutamatergic neurons within 20 h after pharmacologically induced seizure. Bioinformatic analysis of the dynamic nascent proteome indicates that the newly synthesized proteins play diverse roles in excitatory and inhibitory synaptic plasticity, chromatin remodeling, homeostatic mechanisms, and proteasomal and metabolic functions, extending our understanding of the diversity of plasticity mechanisms.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteoma , Masculino , Femenino , Ratones , Animales , Proteoma/metabolismo , Proteómica/métodos , Biotina/metabolismo , Neuronas/metabolismo , Plasticidad Neuronal/fisiología , Aminoácidos/metabolismo , Metionina/metabolismo , Alquinos/metabolismo , Convulsiones/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
12.
Cell Rep ; 38(4): 110287, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081342

RESUMEN

Intercellular transfer of toxic proteins between neurons is thought to contribute to neurodegenerative disease, but whether direct interneuronal protein transfer occurs in the healthy brain is not clear. To assess the prevalence and identity of transferred proteins and the cellular specificity of transfer, we biotinylated retinal ganglion cell proteins in vivo and examined biotinylated proteins transported through the rodent visual circuit using microscopy, biochemistry, and mass spectrometry. Electron microscopy demonstrated preferential transfer of biotinylated proteins from retinogeniculate inputs to excitatory lateral geniculate nucleus (LGN) neurons compared with GABAergic neurons. An unbiased mass spectrometry-based screen identified ∼200 transneuronally transported proteins (TNTPs) isolated from the visual cortex. The majority of TNTPs are present in neuronal exosomes, and virally expressed TNTPs, including tau and ß-synuclein, were detected in isolated exosomes and postsynaptic neurons. Our data demonstrate transfer of diverse endogenous proteins between neurons in the healthy intact brain and suggest that TNTP transport may be mediated by exosomes.


Asunto(s)
Comunicación Celular/fisiología , Exosomas/metabolismo , Neuronas/metabolismo , Corteza Visual/metabolismo , Animales , Técnicas de Trazados de Vías Neuroanatómicas , Proteómica , Ratas , Ratas Wistar , Vías Visuales/metabolismo , Xenopus
13.
iScience ; 24(11): 103321, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34816099

RESUMEN

A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPCs). We profiled the endogenous LIN28A-interacting proteins in NPCs differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Prompted by the interactome data, we revealed that LIN28A may impact the subcellular distribution of its interactors and stress granule formation upon oxidative stress. Overall, our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.

14.
Mol Psychiatry ; 26(11): 7047-7068, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33888873

RESUMEN

Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown. Here, induced pluripotent stem cells derived from individuals deficient in CDKL5 protein were used to generate neural cells. Proteomic and phosphoproteomic approaches revealed disruption of several pathways, including microtubule-based processes and cytoskeleton organization. While CDD-derived neural progenitor cells have proliferation defects, neurons showed morphological alterations and compromised glutamatergic synaptogenesis. Moreover, the electrical activity of CDD cortical neurons revealed hyperexcitability during development, leading to an overly synchronized network. Many parameters of this hyperactive network were rescued by lead compounds selected from a human high-throughput drug screening platform. Our results enlighten cellular, molecular, and neural network mechanisms of genetic epilepsy that could ultimately promote novel therapeutic opportunities for patients.


Asunto(s)
Síndromes Epilépticos , Animales , Síndromes Epilépticos/genética , Humanos , Ratones , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteómica
15.
J Proteome Res ; 20(1): 763-775, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147027

RESUMEN

Accumulation of aggregated amyloid beta (Aß) in the brain is believed to impair multiple cellular pathways and play a central role in Alzheimer's disease pathology. However, how this process is regulated remains unclear. In theory, measuring protein synthesis is the most direct way to evaluate a cell's response to stimuli, but to date, there have been few reliable methods to do this. To identify the protein regulatory network during the development of Aß deposition in AD, we applied a new proteomic technique to quantitate newly synthesized protein (NSP) changes in the cerebral cortex and hippocampus of 2-, 5-, and 9-month-old APP/PS1 AD transgenic mice. This bio-orthogonal noncanonical amino acid tagging analysis combined PALM (pulse azidohomoalanine labeling in mammals) and HILAQ (heavy isotope labeled AHA quantitation) to reveal a comprehensive dataset of NSPs prior to and post Aß deposition, including the identification of proteins not previously associated with AD, and demonstrated that the pattern of differentially expressed NSPs is age-dependent. We also found dysregulated vesicle transportation networks including endosomal subunits, coat protein complex I (COPI), and mitochondrial respiratory chain throughout all time points and two brain regions. These results point to a pathological dysregulation of vesicle transportation which occurs prior to Aß accumulation and the onset of AD symptoms, which may progressively impact the entire protein network and thereby drive neurodegeneration. This study illustrates key pathway regulation responses to the development of AD pathogenesis by directly measuring the changes in protein synthesis and provides unique insights into the mechanisms that underlie AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteómica
16.
Cell Death Dis ; 11(10): 828, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024077

RESUMEN

Amyloid beta (Aß) accumulates within neurons in the brains of early stage Alzheimer's disease (AD) patients. However, the mechanism underlying its toxicity remains unclear. Here, a triple omics approach was used to integrate transcriptomic, proteomic, and metabolomic data collected from a nerve cell model of the toxic intracellular aggregation of Aß. It was found that intracellular Aß induces profound changes in the omics landscape of nerve cells that are associated with a pro-inflammatory, metabolic reprogramming that predisposes cells to die via the oxytosis/ferroptosis regulated cell death pathway. Notably, the degenerative process included substantial alterations in glucose metabolism and mitochondrial bioenergetics. Our findings have implications for the understanding of the basic biology of proteotoxicity, aging, and AD as well as for the development of future therapeutic interventions designed to target the oxytosis/ferroptosis regulated cell death pathway in the AD brain.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Muerte Celular/fisiología , Ferroptosis/fisiología , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Muerte Celular/genética , Humanos , Mitocondrias/metabolismo , Proteómica/métodos
17.
Sci Rep ; 10(1): 15983, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994440

RESUMEN

Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.


Asunto(s)
Encéfalo/metabolismo , Hígado/metabolismo , Proteoma/química , Proteoma/metabolismo , Factores de Edad , Alanina/análogos & derivados , Alanina/química , Animales , Química Clic , Masculino , Espectrometría de Masas , Ratones , Especificidad de Órganos , Estabilidad Proteica , Proteolisis , Proteostasis
18.
J Proteome Res ; 19(8): 3153-3161, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32510229

RESUMEN

Data-independent acquisition (DIA) is a promising technique for the proteomic analysis of complex protein samples. A number of studies have claimed that DIA experiments are more reproducible than data-dependent acquisition (DDA), but these claims are unsubstantiated since different data analysis methods are used in the two methods. Data analysis in most DIA workflows depends on spectral library searches, whereas DDA typically employs sequence database searches. In this study, we examined the reproducibility of the DIA and DDA results using both sequence database and spectral library search. The comparison was first performed using a cell lysate and then extended to an interactome study. Protein overlap among the technical replicates in both DDA and DIA experiments was 30% higher with library-based identifications than with sequence database identifications. The reproducibility of quantification was also improved with library search compared to database search, with the mean of the coefficient of variation decreasing more than 30% and a reduction in the number of missing values of more than 35%. Our results show that regardless of the acquisition method, higher identification and quantification reproducibility is observed when library search was used.


Asunto(s)
Proteínas , Proteómica , Análisis de Datos , Reproducibilidad de los Resultados
19.
Anal Chem ; 92(2): 1697-1701, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31880919

RESUMEN

Mass spectrometry-based proteomics is an invaluable tool for addressing important biological questions. Data-dependent acquisition methods effectuate stochastic acquisition of data in complex mixtures, which results in missing identifications across replicates. We developed a search approach that improves the reproducibility of data acquired from any mass spectrometer. In our approach, a spectral library is built from the identification results from a database search, and then, the library is used to research the same data files to obtain the final result. We showed that higher identification and quantification reproducibility is achieved with the dual-search approach than with a typical database search. Four datasets with different complexity were compared: (1) data from a cell lysate study performed in our lab, (2) data from an interactome study performed in our lab, (3) a publicly available extracellular vesicles dataset, and (4) a publicly available phosphoproteomics dataset. Our results show that the dual-search approach can be widely and easily used to improve data quality in proteomics data.


Asunto(s)
Bases de Datos de Proteínas , Péptidos/análisis , Proteínas/análisis , Proteómica , Humanos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
20.
Cell Rep ; 28(7): 1935-1947.e5, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412257

RESUMEN

The brain processes information and generates cognitive and motor outputs through functions of spatially organized proteins in different types of neurons. More complete knowledge of proteins and their distributions within neuronal compartments in intact circuits would help in the understanding of brain function. We used unbiased in vivo protein labeling with intravitreal NHS-biotin for discovery and analysis of endogenous axonally transported proteins in the visual system using tandem mass spectrometric proteomics, biochemistry, and both light and electron microscopy. Purification and proteomic analysis of biotinylated peptides identified ∼1,000 proteins transported from retinal ganglion cells into the optic nerve and ∼575 biotinylated proteins recovered from presynaptic compartments of lateral geniculate nucleus and superior colliculus. Approximately 360 biotinylated proteins were differentially detected in the two retinal targets. This study characterizes axonally transported proteins in the healthy adult visual system by analyzing proteomes from multiple compartments of retinal ganglion cell projections in the intact brain.


Asunto(s)
Transporte Axonal , Nervio Óptico/metabolismo , Terminales Presinápticos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Células Ganglionares de la Retina/metabolismo , Vías Visuales/metabolismo , Animales , Masculino , Nervio Óptico/citología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Vías Visuales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...