Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomech ; 56: 61-70, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28363382

RESUMEN

Unrelated clades of aquatic tetrapod have evolved a similar range of skull shapes, varying from longirostrine (elongate and narrow rostrum) to brevirostrine (short rostrum). However, it is unclear which aspects of organismal performance are associated with this convergence in the range of skull shapes. Furthermore, it is not known how fundamental anatomical differences between groups influence these relationships. Here we address this by examining the load bearing capabilities of the skulls of two of the most diverse groups of living aquatic tetrapod: crocodilians and odontocetes. We use finite element analysis to examine the abilities of different cranial morphologies to resist a range of biologically relevant feeding loads including biting, shaking and twisting. The results allow for form/function relationships to be compared and contrasted between the two groups. We find that cranial shape has similar influences on performance during biting, shaking or twisting load cases at the anterior tooth positions, e.g. brevirostrine species experienced less strain than longirostrine species. The pattern of this form/function relationship is similar for both crocodilians and odontocetes, despite their fundamentally different anatomies. However, when loading teeth at the posterior end or middle of the tooth row the results do not follow the same pattern. Behavioural differences in bite location plays a key role in determining functional abilities in aquatic tetrapod taxa.


Asunto(s)
Caimanes y Cocodrilos , Cráneo/anatomía & histología , Cráneo/fisiología , Ballenas , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Animales , Fenómenos Biomecánicos , Fuerza de la Mordida , Análisis de Elementos Finitos , Diente/fisiología , Ballenas/anatomía & histología , Ballenas/fisiología
2.
PLoS One ; 11(9): e0156950, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27658247

RESUMEN

Biological invasions can induce rapid evolutionary change. As cane toads (Rhinella marina) have spread across tropical Australia over an 80-year period, their rate of invasion has increased from around 15 to 60 km per annum. Toads at the invasion front disperse much faster and further than conspecifics from range-core areas, and their offspring inherit that rapid dispersal rate. We investigated morphological changes that have accompanied this dramatic acceleration, by conducting three-dimensional morphometric analyses of toads from both range-core and invasion-front populations. Morphology of heads, limbs, pectoral girdles and pelvic girdles differed significantly between toads from the two areas, ranging from 0.5% to 16.5% difference in mean bone dimensions between populations, with invasion-front toads exhibiting wider forelimbs, narrower hindlimbs and more compact skulls. Those changes plausibly reflect an increased reliance on bounding (multiple short hops in quick succession) rather than separate large leaps. Within an 80-year period, invasive cane toads have converted the basic anuran body plan - which evolved for occasional large leaps to evade predators - into a morphotype better-suited to sustained long-distance travel.

3.
J Theor Biol ; 301: 1-14, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22342680

RESUMEN

The ability to warp three-dimensional (3D) meshes from known biological morphology to fit other known, predicted or hypothetical morphologies has a range of potential applications in functional morphology and biomechanics. One of the most challenging of these applications is Finite Element Analysis (FEA), a potentially powerful non-destructive tool in the prediction of mechanical behaviour. Geometric morphometrics is another typically computer-based approach commonly applied in morphological studies that allows for shape differences between specimens to be quantified and analysed. There has been some integration of these two fields in recent years. Although a number of shape warping approaches have been developed previously, none are easily accessible. Here we present an easily accessed method for warping meshes based on freely available software and test the effectiveness of the approach in FEA using the varanoid lizard mandible as a model. We further present new statistical approaches, strain frequency plots and landmark point strains, to analyse FEA results quantitatively and further integrate FEA with geometric morphometrics. Using strain frequency plots, strain field, bending displacements and landmark point strain data we demonstrate that the mechanical behaviour of warped specimens reproduces that of targets without significant error. The influence of including internal cavity morphology in FEA models was also examined and shown to increase bending displacements and strain magnitudes in FE models. The warping approaches presented here will be useful in a range of applications including the generation and analysis of virtual reconstructions, generic models that approximate species means, hypothetical morphologies and evolutionary intermediaries.


Asunto(s)
Lagartos/anatomía & histología , Mandíbula/anatomía & histología , Modelos Anatómicos , Animales , Fenómenos Biomecánicos , Biometría/métodos , Biología Computacional/métodos , Análisis de Elementos Finitos , Imagenología Tridimensional/métodos , Filogenia , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA