Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2220392121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305758

RESUMEN

Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered. The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion. West of the Wallace Line, gibbon ape leukemia viruses (GALVs) have been isolated from captive gibbons. Two microbat species from China appear to have been infected naturally. East of Wallace's Line, the woolly monkey virus (a GALV) and the closely related koala retrovirus (KoRV) have been detected in eutherians and marsupials in the Australo-Papuan region, often vertically transmitted. The detected vertically transmitted GALV-like viruses in Australo-Papuan fauna compared to sporadic horizontal transmission in Southeast Asia and China suggest the GALV-KoRV clade originates in the former region and further models of early-stage genome colonization may be found. We screened 278 samples, seven bat and one rodent family endemic to the Australo-Papuan region and bat and rodent species found on both sides of the Wallace Line. We identified two rodents (Melomys) from Australia and Papua New Guinea and no bat species harboring GALV-like retroviruses. Melomys leucogaster from New Guinea harbored a genomically complete replication-competent retrovirus with a shared integration site among individuals. The integration was only present in some individuals of the species indicating this retrovirus is at the earliest stages of germline colonization of the Melomys genome, providing a new small wild mammal model of early-stage genome colonization.


Asunto(s)
Quirópteros , Retrovirus Endógenos , Gammaretrovirus , Marsupiales , Animales , Virus de la Leucemia del Gibón/genética , Nueva Guinea , Gammaretrovirus/genética , Murinae/genética , Marsupiales/genética , Células Germinativas
2.
Microorganisms ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456800

RESUMEN

Spillover of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) to North American white-tailed deer (Odocoileus virginianus) has been documented. However, it is unclear if this is a phenomenon specific to North American deer or is a broader problem. We evaluated pre and pandemic exposure of German and Austrian deer species using a SARS-CoV-2 pseudoneutralization assay. In stark contrast to North American white-tailed deer, we found no evidence of SARS-CoV-2 exposure.

3.
Sci Total Environ ; 773: 145446, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588222

RESUMEN

In climates with seasonally limited precipitation, terrestrial animals congregate at high densities at scarce water sources. We hypothesize that viruses can exploit the recurrence of these diverse animal congregations to spread. In this study, we test the central prediction of this hypothesis - that viruses employing this transmission strategy remain stable and infectious in water. Equid herpesviruses (EHVs) were chosen as a model as they have been shown to remain stable and infectious in water for weeks under laboratory conditions. Using fecal data from wild equids from a previous study, we establish that EHVs are shed more frequently by their hosts during the dry season, increasing the probability of water source contamination with EHV. We document the presence of several strains of EHVs present in high genome copy number from the surface water and sediments of waterholes sampled across a variety of mammalian assemblages, locations, temperatures and pH. Phylogenetic analysis reveals that the different EHV strains found exhibit little divergence despite representing ancient lineages. We employed molecular approaches to show that EHVs shed remain stable in waterholes with detection decreasing with increasing temperature in sediments. Infectivity experiments using cell culture reveals that EHVs remain infectious in water derived from waterholes. The results are supportive of water as an abiotic viral vector for EHV.


Asunto(s)
Infecciones por Herpesviridae , Herpesviridae , Animales , Filogenia , Estaciones del Año , Agua
4.
Nat Commun ; 12(1): 1316, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637755

RESUMEN

Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.


Asunto(s)
Células Germinativas , Neoplasias/genética , Infecciones por Retroviridae/genética , Retroviridae/genética , Animales , Retrovirus Endógenos , Evolución Molecular , Gammaretrovirus/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Neoplasias/virología , Phascolarctidae/genética , Phascolarctidae/virología , Proteínas Represoras/genética , Infecciones por Retroviridae/virología , Proteína bcl-X/genética
5.
Mol Ecol Resour ; 19(6): 1486-1496, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31349392

RESUMEN

Determining species distributions can be extremely challenging but is crucial to ecological and conservation research. Environmental DNA (eDNA) approaches have shown particular promise in aquatic systems for several vertebrate and invertebrate species. For terrestrial animals, however, eDNA-based surveys are considerably more difficult due to the lack of or difficulty in obtaining appropriate sampling substrate. In water-limited ecosystem where terrestrial mammals are often forced to congregate at waterholes, water and sediment from shared water sources may be a suitable substrate for noninvasive eDNA approaches. We characterized mitochondrial DNA sequences from a broad range of terrestrial mammal species in two different African ecosystems (in Namibia and Tanzania) using eDNA isolated from native water, sediment and water filtered through glass fibre filters. A hybridization capture enrichment with RNA probes targeting the mitochondrial genomes of 38 mammal species representing the genera/families expected at the respective ecosystems was employed, and 16 species were identified, with a maximum mitogenome coverage of 99.8%. Conventional genus-specific PCRs were tested on environmental samples for two genera producing fewer positive results than hybridization capture enrichment. An experiment with mock samples using DNA from non-African mammals showed that baits covering 30% of nontarget mitogenomes produced 91% mitogenome coverage after capture. In the mock samples, over-representation of DNA of one species still allowed for the detection of DNA of other species that was at a 100-fold lower concentration. Hybridization capture enrichment of eDNA is therefore an effective method for monitoring terrestrial mammal species from shared water sources.


Asunto(s)
ADN Ambiental/genética , Hibridación Genética/genética , Hibridación de Ácido Nucleico/genética , Animales , Biodiversidad , ADN Mitocondrial/genética , Ecosistema , Monitoreo del Ambiente/métodos , Genoma Mitocondrial/genética , Mamíferos , Metagenómica/métodos , Namibia , Tanzanía , Agua
6.
Nucleic Acids Res ; 40(5): 2041-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22102577

RESUMEN

Determining the underlying haplotypes of individual human genomes is an essential, but currently difficult, step toward a complete understanding of genome function. Fosmid pool-based next-generation sequencing allows genome-wide generation of 40-kb haploid DNA segments, which can be phased into contiguous molecular haplotypes computationally by Single Individual Haplotyping (SIH). Many SIH algorithms have been proposed, but the accuracy of such methods has been difficult to assess due to the lack of real benchmark data. To address this problem, we generated whole genome fosmid sequence data from a HapMap trio child, NA12878, for which reliable haplotypes have already been produced. We assembled haplotypes using eight algorithms for SIH and carried out direct comparisons of their accuracy, completeness and efficiency. Our comparisons indicate that fosmid-based haplotyping can deliver highly accurate results even at low coverage and that our SIH algorithm, ReFHap, is able to efficiently produce high-quality haplotypes. We expanded the haplotypes for NA12878 by combining the current haplotypes with our fosmid-based haplotypes, producing near-to-complete new gold-standard haplotypes containing almost 98% of heterozygous SNPs. This improvement includes notable fractions of disease-related and GWA SNPs. Integrated with other molecular biological data sets, this phase information will advance the emerging field of diploid genomics.


Asunto(s)
Genoma Humano , Proyecto Mapa de Haplotipos , Haplotipos , Análisis de Secuencia de ADN , Algoritmos , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/normas
7.
Genome Res ; 21(10): 1672-85, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21813624

RESUMEN

Independent determination of both haplotype sequences of an individual genome is essential to relate genetic variation to genome function, phenotype, and disease. To address the importance of phase, we have generated the most complete haplotype-resolved genome to date, "Max Planck One" (MP1), by fosmid pool-based next generation sequencing. Virtually all SNPs (>99%) and 80,000 indels were phased into haploid sequences of up to 6.3 Mb (N50 ~1 Mb). The completeness of phasing allowed determination of the concrete molecular haplotype pairs for the vast majority of genes (81%) including potential regulatory sequences, of which >90% were found to be constituted by two different molecular forms. A subset of 159 genes with potentially severe mutations in either cis or trans configurations exemplified in particular the role of phase for gene function, disease, and clinical interpretation of personal genomes (e.g., BRCA1). Extended genomic regions harboring manifold combinations of physically and/or functionally related genes and regulatory elements were resolved into their underlying "haploid landscapes," which may define the functional genome. Moreover, the majority of genes and functional sequences were found to contain individual or rare SNPs, which cannot be phased from population data alone, emphasizing the importance of molecular phasing for characterizing a genome in its molecular individuality. Our work provides the foundation to understand that the distinction of molecular haplotypes is essential to resolve the (inherently individual) biology of genes, genomes, and disease, establishing a reference point for "phase-sensitive" personal genomics. MP1's annotated haploid genomes are available as a public resource.


Asunto(s)
Genoma Humano , Haplotipos , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
8.
PLoS One ; 6(6): e21498, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731768

RESUMEN

BACKGROUND: Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene. METHODOLOGY/PRINCIPAL FINDINGS: Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al., resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.'s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs. CONCLUSION/SIGNIFICANCE: Our results using whole zebrafish embryos have provided a more comprehensive picture of the expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox CNEs and more deeply conserved sub-sequences within already identified CNEs.


Asunto(s)
Secuencia Conservada/genética , ADN Intergénico/genética , Embrión no Mamífero/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Genes Duplicados/genética , Sitios Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Takifugu/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
9.
PLoS Genet ; 5(12): e1000762, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20011110

RESUMEN

Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA.


Asunto(s)
Evolución Biológica , Secuencias Reguladoras de Ácidos Nucleicos , Vertebrados/genética , Animales , Humanos , Lampreas/genética
10.
PLoS One ; 4(12): e8407, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-20027311

RESUMEN

BACKGROUND: Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large assemblies. PRINCIPAL FINDINGS: We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a 96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing platforms are combined to obtain a cost-effective assembly. CONCLUSIONS: These algorithms extend the utility of short read only assemblies into large complex genomes. They have been implemented and made available within the open-source Velvet short-read de novo assembler.


Asunto(s)
Algoritmos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Animales , Cromosomas Artificiales Bacterianos/genética , Simulación por Computador , Hurones/genética , Pseudomonas syringae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA