Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(10): ziae108, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39228688

RESUMEN

Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3 -/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice. Osteoblast activity is moderately increased in 24-week-old Girk3 -/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3 -/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or ß-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3 -/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from cells expressing Cre recombinase from the 2.3 kb-Col1a1 promoter, including osteoblasts and osteocytes, is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.

2.
Calcif Tissue Int ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276238

RESUMEN

We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein ß2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.

3.
Bone ; 186: 117147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866124

RESUMEN

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCµ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.


Asunto(s)
Membrana Celular , Ratones Noqueados , Osteocitos , Animales , Ratones , Membrana Celular/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Proteína Quinasa C/metabolismo
4.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669339

RESUMEN

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Asunto(s)
Envejecimiento , Dominio Catalítico , Catarata , Glutamato-Cisteína Ligasa , Glutatión , Cristalino , Catarata/patología , Catarata/genética , Catarata/metabolismo , Animales , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Glutatión/metabolismo , Cristalino/metabolismo , Cristalino/patología , Envejecimiento/metabolismo , Humanos , Modelos Animales de Enfermedad , Mutación , Técnicas de Sustitución del Gen
5.
Artículo en Inglés | MEDLINE | ID: mdl-37855709

RESUMEN

This study investigates the effects of peroxisome proliferator-activated receptor gamma (PPARγ) inhibition on bone and immune cell profiles in aged female mice, as well as in vitro stromal stem cell osteogenic differentiation and inflammation gene expression. The hypothesis was that inhibition of PPARγ would increase bone mass and alter immune and other cellular functions. Our results showed that treatment with PPARγ antagonist GW9662 for 6 weeks reduced bone volume and trabecular number and increased trabecular spacing. However, inhibition of PPARγ had no significant effect on marrow and spleen immune cell composition in aged female mice. In vitro experiments indicated that GW9662 treatment increased the expression of osteogenic genes but did not affect adipogenic genes. Additionally, GW9662 treatment decreased the expression of several inflammation-related genes. Overall, these findings suggest that PPARγ inhibition may have adverse effects on bone in aged female mice.


Asunto(s)
Anilidas , Osteogénesis , PPAR gamma , Animales , Femenino , Ratones , Adipogénesis , Anilidas/administración & dosificación , Inflamación , Osteogénesis/efectos de los fármacos , PPAR gamma/antagonistas & inhibidores , Huesos/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/patología
6.
Cell Death Dis ; 14(9): 621, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735154

RESUMEN

The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1ß and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1ß in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1ß. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.


Asunto(s)
Daño por Reperfusión , Enfermedades de la Retina , Animales , Ratones , Arginasa/genética , Citocinas , Isquemia , Células Mieloides , Ornitina , Ornitina Descarboxilasa , Factor de Necrosis Tumoral alfa
7.
Front Immunol ; 14: 1244622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744363

RESUMEN

Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by enzymes including IDO1 that are induced by inflammatory cytokines such as interferon-gamma. Kyn levels in circulation increase with age and Kyn is implicated in several age-related disorders including neurodegeneration, osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive disease in HIV patients, and antiretroviral therapy does not normalize IDO1 activity in these subjects. Kyn is now recognized as an endogenous agonist of the aryl hydrocarbon receptor, and AhR activation itself has been found to induce muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease matrix formation by osteoblasts, and lead to senescence of bone marrow stem cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer therapies. We propose that some of these drugs may be repurposed to improve musculoskeletal health in older adults living with HIV.


Asunto(s)
Fragilidad , Infecciones por VIH , Humanos , Anciano , Quinurenina , Infecciones por VIH/tratamiento farmacológico , Triptófano , Citocinas
8.
Bone ; 173: 116811, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244427

RESUMEN

Kynurenine (Kyn) is a tryptophan metabolite that increases with age and promotes musculoskeletal dysfunction. We previously found a sexually dimorphic pattern in how Kyn affects bone, with harmful effects more prevalent in females than males. This raises the possibility that male sex steroids might exert a protective effect that blunts the effects of Kyn in males. To test this, orchiectomy (ORX) or sham surgeries were performed on 6-month-old C57BL/6 mice, after which mice received Kyn (10 mg/kg) or vehicle via intraperitoneal injection, once daily, 5×/week, for four weeks. Bone histomorphometry, DXA, microCT, and serum marker analyses were performed after sacrifice. In vitro studies were performed to specifically test the effect of testosterone on activation of aryl hydrocarbon receptor (AhR)-mediated signaling by Kyn in mesenchymal-lineage cells. Kyn treatment reduced cortical bone mass in ORX- but not sham-operated mice. Trabecular bone was unaffected. Kyn's effects on cortical bone in ORX mice were attributed primarily to enhanced endosteal bone resorption activity. Bone marrow adipose tissue was increased in Kyn-treated ORX animals but was unchanged by Kyn in sham-operated mice. ORX surgery increased mRNA expression of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1a1 in the bone, suggesting a priming and/or amplification of AhR signaling pathways. Mechanistic in vitro studies revealed that testosterone blunted Kyn-stimulated AhR transcriptional activity and Cyp1a1 expression in mesenchymal-linage cells. These data suggest a protective role for male sex steroids in blunting the harmful effects of Kyn in cortical bone. Therefore, testosterone may play an important role in regulating Kyn/AhR signaling in musculoskeletal tissues, suggesting crosstalk between male sex steroids and Kyn signaling may influence age-associated musculoskeletal frailty.


Asunto(s)
Quinurenina , Receptores de Hidrocarburo de Aril , Femenino , Ratones , Masculino , Animales , Quinurenina/metabolismo , Quinurenina/farmacología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Orquiectomía , Citocromo P-450 CYP1A1 , Ratones Endogámicos C57BL , Hueso Cortical/metabolismo , Testosterona/farmacología
9.
J Am Acad Orthop Surg ; 31(11): e516-e522, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071886

RESUMEN

BACKGROUND: Indicated surgical management of metacarpal neck fractures varies with techniques, including Kirschner wire fixation, plate fixation, intramedullary fixation, and headless compression screw fixation, without demonstrated superiority. This study compares intramedullary threaded nail (ITN) fixation with a locking plate construct. METHODS: Index through small finger metacarpals were harvested from 10 embalmed cadavers. After application of appropriate exclusion criteria, remaining metacarpals underwent neck fracture creation by a three-point load to failure. Eight samples were randomly allocated to fixation with ITN fixation, and six were stabilized with a 2.3-mm seven-hole locking plate. Samples were then subjected to a second round of biomechanical testing using the same apparatus. Ultimate load between the intact tissue and the subsequently stabilized fracture was analyzed with a paired Student t -test. Percentage change in ultimate load in the intact tissue and stabilized tissue was calculated, and the magnitude of relative difference between the two groups was analyzed using unpaired Student t -tests. Statistical difference was defined by a P value of < 0.05. RESULTS: Both groups demonstrated the ability to handle a biomechanical load; however, both were significantly weaker than the intact tissue (paired Student t -test p ITN-fixed versus p ITN-intact = 0.006; p plate-fixed versus p plate-intact = 0.002). ITN samples demonstrated a higher load to failure (unpaired Student t -test p ITN-fixed versus p plate-fixed = 0.039). CONCLUSION: ITN provides a biomechanically stronger fixation constructed for vertically oriented metacarpal neck fractures compared with locking plate fixation. Both ITN and locking plate constructs provide stabilization capable of tolerating a biomechanical load; however, both fixation modalities are weaker than the native tissue.


Asunto(s)
Fracturas Óseas , Huesos del Metacarpo , Humanos , Fenómenos Biomecánicos , Placas Óseas , Tornillos Óseos , Cadáver , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Huesos del Metacarpo/cirugía
10.
ACS Pharmacol Transl Sci ; 6(1): 22-39, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36659961

RESUMEN

Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated ß-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA