Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(4): 1310-1314, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665657

RESUMEN

In this report, we describe proton-coupled electron transfer (PCET) reactivity at the surface of the Keggin-type polyoxotungstate cluster [nBu4N]3[PWVI12O40] (PW12) in acetonitrile. Bond dissociation free energies (BDFEs) of the O-H groups generated upon reduction of PW12 in the presence of acid are determined through the construction of a potential-pKa diagram. The surface O-H bonds are found to be weak (BDFE(O-H)avg < 48 kcal mol-1), comparable to the BDFE of H2. This is consistent with the observed formation of H2 upon addition of a suitably strong organic acid, H2NPh2+ (pKa MeCN = 5.98), to the reduced form of the cluster. The one-electron reduced form of PW12 is isolated and used in conjunction with acid to realize the stoichiometric semihydrogenation of azobenzene via PCET from the surface of the reduced cluster.

2.
Dalton Trans ; 53(1): 93-104, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38038996

RESUMEN

Non-aqueous redox flow batteries constitute a promising solution for grid-scale energy storage due to the ability to achieve larger cell voltages than can be readily accessed in water. However, their widespread application is limited by low solubility of the electroactive species in organic solvents. In this work, we demonstrate that organic functionalization of titanium-substituted polyoxovanadate-alkoxide clusters increases the solubility of these assemblies over that of their homoleptic congeners by a factor of >10 in acetonitrile. Cyclic voltammetry, chronoamperometry, and charge-discharge cycling experiments are reported, assessing the electrochemical properties of these clusters relevant to their ability to serve as multielectron charge carriers for energy storage. The kinetic implications of ligand variation are assessed, demonstrating the role of ligand structure on the diffusivity and heterogeneous rates of electron transfer in mixed-metal charge carriers. Our results offer new insights into the impact of structural modifications on the physicochemical properties of these assemblies.

3.
Phys Rev Lett ; 131(10): 108001, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739359

RESUMEN

We introduce global connectivity, Ω, which quantifies the detailed connectivity of a material and accurately captures reactivity behavior. We demonstrate that combining global and local connectivity describes how metal oxides interact with hydrogen. Blending density functional theory, graph theory, and machine learning we built a reactivity model which accurately predicts hydrogen intercalation potentials of different metal oxides experimentally measured in the lab. The use of global connectivity can accelerate materials design through the development of novel structure-property relationships.

4.
Inorg Chem ; 62(4): 1455-1465, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638826

RESUMEN

Prussian blue (PB) and its analogues are promising materials for electrochemical energy storage, yet their use in flow-type devices is limited by their lack of redox responsiveness as colloidal suspensions. We have investigated the redox chemistry amine functionalization of PB along with its Cu analogue (CuPBA). No redox response of colloidal PB was observed and suspensions of CuPBA formed films on electrode surfaces with and without applied potentials; the films were redox-active but the material that remained suspended in solution did not participate in redox chemistry. Propylamine (pa), ethylenediamine (en), or tetramethylethylenediamine (TMEDA) were added in an attempt to maintain well dispersed suspensions through nanoparticle surface functionalization. Propylamine modifications resulted in a loss of the CuPBA network and subsequent precipitation of insoluble materials. Coordination of ethylenediamine prompted the formation of Cu and Fe monomers ([Cu(en)2]m+/[Fe(CN)6]n-]) that remained soluble in aqueous electrolytes. In the absence of supporting electrolytes, these monomers formed a one-dimensional (1D) polymeric structure (Cu2Fe-1D). TMEDA modification preserved the CuPBA extended structure with only modest precipitate formation over 30 min. The redox responsiveness of these suspensions depended on conditions; in 1 M KCl, no redox chemistry was observed for the CuPBA. In pH 4 potassium hydrogen phthalate buffer, a signal was observed that was attributed to the Fe centers of CuPBA. Under these conditions, the material precipitated in ∼15 min and the signal was lost. Although the Fe centers in these networks are redox-active, additional work is needed to realize longer-term redox activity and stability. Ligand modifications can alter the properties of these networks but within a given ligand class, e.g., amines, the effects can vary greatly from the deconstruction of the framework to preventing film formation.

5.
J Am Chem Soc ; 144(14): 6420-6433, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35289172

RESUMEN

Metal oxides are attracting increased attention as electrocatalysts owing to their affordability, tunability, and reactivity. However, these materials can undergo significant chemical changes under reaction conditions, presenting challenges for characterization and optimization. Herein, we combine experimental and computational methods to demonstrate that bulk hydrogen intercalation governs the activity of tungsten trioxide (WO3) toward the hydrogen evolution reaction (HER). In contrast to the focus on surface processes in heterogeneous catalysis, we demonstrate that bulk oxide modification is responsible for experimental HER activity. Density functional theory (DFT) calculations reveal that intercalation enables the HER by altering the acid-base character of surface sites and preventing site blocking by hydration. First-principles microkinetic modeling supports that the experimental HER rates can only be explained by intercalated HxWO3, whereas nonintercalated WO3 does not catalyze the HER. Overall, this work underscores the critical influence of hydrogen intercalation on aqueous cathodic electrocatalysis at metal oxides.

6.
J Am Chem Soc ; 143(38): 15756-15768, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34528799

RESUMEN

The concerted transfer of protons and electrons enables the activation of small-molecule substrates by bypassing energetically costly intermediates. Here, we present the synthesis and characterization of several hydrogenated forms of an organofunctionalized vanadium oxide assembly, [V6O13(TRIOLNO2)2]2-, and their ability to facilitate the concerted transfer of protons and electrons to O2. Electrochemical analysis reveals that the fully reduced cluster is capable of mediating 2e-/2H+ transfer reactions from surface hydroxide ligands, with an average bond dissociation free energy (BDFE) of 61.6 kcal/mol. Complementary stoichiometric experiments with hydrogen-atom-accepting reagents of established bond strengths confirm that the electrochemically established BDFE predicts the 2H+/2e- transfer reactivity of the assembly. Finally, the reactivity of the reduced polyoxovanadate toward O2 reduction is summarized; our results indicate a stepwise reduction of the substrate, proceeding through H2O2 en route to the formation of H2O. Kinetic isotope effect experiments confirm the participation of hydrogen transfer in the rate-determining step of both the reduction of O2 and H2O2. This work constitutes the first example of hydrogen atom transfer for small-molecule activation with reduced polyoxometalates, where both electron and proton originate from the cluster.

7.
ACS Appl Mater Interfaces ; 12(40): 44658-44670, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32929950

RESUMEN

The ability to predict intercalation energetics from first principles is attractive for identifying candidate materials for energy storage, chemical sensing, and catalysis. In this work, we introduce a computational framework that can be used to predict the thermodynamics of hydrogen intercalation in tungsten trioxide (WO3). Specifically, using density functional theory (DFT), we investigated intercalation energetics as a function of adsorption site and hydrogen stoichiometry. Site-specific acid-base properties determined using DFT were used to develop linear structure screening models that informed a kernel ridge energy prediction model. These regressions provided a series of hydrogen binding energy predictions across stoichiometries ranging from WO3 to H0.625WO3, which were then converted to equilibrium potentials for hydrogen intercalation. Experimental validation using cyclic voltammetry measurements yielded good agreement with the predicted intercalation potentials. This methodology enables fast exploration of a large geometric configuration space and reveals an intuitive physical relationship between acidity, basicity, and the thermodynamics of hydrogen intercalation. Furthermore, the combination of theoretical and experimental results suggests H0.500WO3 as a maximum stable stoichiometry for the bronzes that arises from competition with hydrogen evolution rather than the inability of WO3 to accommodate additional hydrogen. Our experimental results further indicate hydrogen insertion in WO3 is highly irreversible for low H-stoichiometries, which we propose to be a consequence of the semiconductor-to-metal transition that occurs upon initial H-intercalation. Overall, the agreement between theory and experiment suggests that local acid-base characteristics govern hydrogen intercalation in tungsten trioxide, and this insight can aid the accelerated discovery of redox-active metal oxides for catalytic hydrogenations.

8.
ACS Appl Mater Interfaces ; 11(39): 35879-35887, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31486629

RESUMEN

Electric double-layer (EDL) gating using a custom-synthesized polyester single-ion conductor (PE400-Li) is demonstrated on two-dimensional (2D) crystals for the first time. The electronic properties of graphene and MoTe2 field-effect transistors (FETs) gated with the single-ion conductor are directly compared to a poly(ethylene oxide) dual-ion conductor (PEO:CsClO4). The anions in the single-ion conductor are covalently bound to the backbone of the polymer, leaving only the cations free to form an EDL at the negative electrode and a corresponding cationic depletion layer at the positive electrode. Because the cations are mobile in both the single- and dual-ion conductors, a similar enhancement of the n-branch is observed in both graphene and MoTe2. Specifically, the single-ion conductor decreases the subthreshold swing in the n-branch of the bare MoTe2 FET from 5000 to 250 mV/dec and increases the current density and on/off ratio by two orders of magnitude. However, the single-ion conductor suppressed the p-branch in both the graphene and the MoTe2 FETs, and finite element modeling of ion transport shows that this result is unique to single-ion conductor gating in combination with an asymmetric gate/channel geometry. Both the experiments and modeling suggest that single-ion conductor-gated FETs can achieve sheet densities up to 1014 cm-2, which corresponds to a charge density that would theoretically be sufficient to induce several percent strain in monolayer 2D crystals and potentially induce a semiconductor-to-metal phase transition in MoTe2.

9.
ACS Cent Sci ; 2(9): 667-673, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27725966

RESUMEN

The low conductivity of two-dimensional covalent organic frameworks (2D COFs), and most related coordination polymers, limits their applicability in optoelectronic and electrical energy storage (EES) devices. Although some networks exhibit promising conductivity, these examples generally lack structural versatility, one of the most attractive features of framework materials design. Here we enhance the electrical conductivity of a redox-active 2D COF film by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) within its pores. The resulting poly(3,4-ethylenedioxythiophene) (PEDOT)-infiltrated COF films exhibit dramatically improved electrochemical responses, including quantitative access to their redox-active groups, even for 1 µm-thick COF films that otherwise provide poor electrochemical performance. PEDOT-modified COF films can accommodate high charging rates (10-1600 C) without compromising performance and exhibit both a 10-fold higher current response relative to unmodified films and stable capacitances for at least 10 000 cycles. This work represents the first time that electroactive COFs or crystalline framework materials have shown volumetric energy and power densities comparable with other porous carbon-based electrodes, thereby demonstrating the promise of redox-active COFs for EES devices.

10.
Inorg Chem ; 55(18): 9131-43, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27606600

RESUMEN

A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel and chemical feedstocks. In this report, we discuss the importance of translational research-defined as work that explicitly targets basic discovery as well as technology development-in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.

11.
Phys Chem Chem Phys ; 17(21): 13984-91, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947303

RESUMEN

Molybdenum and tungsten diselenide are among the most robust and efficient semiconductor materials for photoelectrochemistry, but they have seen limited use for integrated solar energy storage systems. Herein, we report that n-type WSe2 photoelectrodes can facilitate unassisted aqueous HI electrolysis to H2(g) and HI3(aq) when placed in contact with a platinum counter electrode and illuminated by simulated sunlight. Even in strongly acidic electrolyte, the photoelectrodes are robust and operate very near their maximum power point. We have rationalized this behavior by characterizing the n-WSe2|HI/HI3 half cell, the Pt|HI/H2||HI3/HI|Pt full cell, and the n-WSe2 band-edge positions. Importantly, specific interactions between the n-WSe2 surface and aqueous iodide significantly shift the semiconductor's flatband potential and allow for unassisted HI electrolysis. These findings exemplify the important role of interfacial chemical reactivity in influencing the energetics of semiconductor-liquid junctions and the resulting device performance.

12.
J Am Chem Soc ; 135(25): 9267-70, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23763295

RESUMEN

Nanoparticles of nickel phosphide (Ni2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni2P nanoparticles were hollow and faceted to expose a high density of the Ni2P(001) surface, which has previously been predicted based on theory to be an active HER catalyst. The Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.


Asunto(s)
Hidrógeno/química , Nanoestructuras/química , Níquel/química , Fosfinas/química , Catálisis , Técnicas Electroquímicas , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
13.
J Am Chem Soc ; 135(1): 223-31, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23198831

RESUMEN

Crystalline p-type WSe(2) has been grown by a chemical vapor transport method. After deposition of noble metal catalysts, p-WSe(2) photocathodes exhibited thermodynamically based photoelectrode energy-conversion efficiencies of >7% for the hydrogen evolution reaction under mildly acidic conditions, and were stable under cathodic conditions for at least 2 h in acidic as well as in alkaline electrolytes. The open circuit potentials of the photoelectrodes in contact with the H(+)/H(2) redox couple were very close to the bulk recombination/diffusion limit predicted from the Shockley diode equation. Only crystals with a prevalence of surface step edges exhibited a shift in flat-band potential as the pH was varied. Spectral response data indicated effective minority-carrier diffusion lengths of ∼1 µm, which limited the attainable photocurrent densities in the samples to ∼15 mA cm(-2) under 100 mW cm(-2) of Air Mass 1.5G illumination.

14.
J Am Chem Soc ; 133(5): 1216-9, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21214239

RESUMEN

Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n(+) emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H(2) evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing less than 50% of the above-band-gap incident photons. Analogous p-Si wire-array electrodes yielded efficiencies <0.2%, largely limited by the low photovoltage generated at the p-Si/H(2)O junction.

15.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...