RESUMEN
Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).
Asunto(s)
Núcleo Hipotalámico Paraventricular , Serotonina , Ratas , Femenino , Masculino , Animales , Fenclonina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Serotonina/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Triptófano Hidroxilasa/metabolismoRESUMEN
The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.
Asunto(s)
Hormona Liberadora de Corticotropina , Ghrelina , Ratones , Masculino , Animales , Hormona Liberadora de Corticotropina/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neuronas/metabolismoRESUMEN
The purpose of this study was to characterize the role of ß1-AR signaling and its cross-talk between cardiac renin-angiotensin system and thyroid-hormone-induced cardiac hypertrophy. T3 was administered at 0.5 mg·kg-1·day-1 for 10 days in ß1-KOT3 and WTT3 groups, while control groups received vehicle alone. Echocardiography and myocardial histology was performed; cardiac and serum ANGI/ANGII and ANP and cardiac levels of p-PKA, p-ERK1/2, p-p38-MAPK, p-AKT, p-4EBP1, and ACE were measured. WTT3 showed decreased IVSTd and increased LVEDD versus WTsal (p < 0.05). ß1-KOT3 exhibited lower LVEDD and higher relative IVSTd versus ß1-KOsal, the lowest levels of ejection fraction, and the highest levels of cardiomyocyte diameter (p < 0.05). Cardiac ANP levels decreased in WTT3 versus ß1-KOT3 (p < 0.05). Cardiac ACE expression was increased in T3-treated groups (p < 0.05). Phosphorylated-p38 MAPK levels were higher in WTT3 versus WTsal or ß1-KOT3, p-4EBP1 was elevated in ß1-KO animals, and p-ERK1/2 was up-regulated in ß1-KOT3. These findings suggest that ß1-AR signaling is crucial for TiCH.
Asunto(s)
Cardiomiopatía Restrictiva , Ratones , Animales , Cardiomiopatía Restrictiva/metabolismo , Cardiomiopatía Restrictiva/patología , Ratones Noqueados , Miocardio/metabolismo , Hormonas Tiroideas , Receptores Adrenérgicos/metabolismo , Angiotensina II/farmacologíaRESUMEN
Introduction: Vasopressin (AVP) and oxytocin (OXT) are neuropeptides produced by magnocellular neurons (MCNs) of the hypothalamus and secreted through neurohypophysis to defend mammals against dehydration. It was recently demonstrated that MCNs also project to limbic structures, modulating several behavioral responses. Methods and Results: We found that 24 h of water deprivation (WD) or salt loading (SL) did not change exploration or anxiety-like behaviors in the elevated plus maze (EPM) test. However, rats deprived of water for 48 h showed reduced exploration of open field and the closed arms of EPM, indicating hypoactivity during night time. We evaluated mRNA expression of glutamate decarboxylase 1 (Gad1), vesicular glutamate transporter 2 (Slc17a6), AVP (Avpr1a) and OXT (Oxtr) receptors in the lateral habenula (LHb), basolateral (BLA) and central (CeA) amygdala after 48 h of WD or SL. WD, but not SL, increased Oxtr mRNA expression in the CeA. Bilateral pharmacological inhibition of OXTR function in the CeA with the OXTR antagonist L-371,257 was performed to evaluate its possible role in regulating the EPM exploration or water intake induced by WD. The blockade of OXTR in the CeA did not reverse the hypoactivity response in the EPM, nor did it change water intake induced in 48-h water-deprived rats. Discussion: We found that WD modulates exploratory activity in rats, but this response is not mediated by oxytocin receptor signaling to the CeA, despite the upregulated Oxtr mRNA expression in that structure after WD for 48 h.
Asunto(s)
Núcleo Amigdalino Central , Ratas , Animales , Núcleo Amigdalino Central/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Deshidratación , Privación de Agua , Agua , ARN Mensajero , Mamíferos/metabolismoRESUMEN
Cardiovascular control is vulnerable to forced high sodium consumption during the per-inatal period, inducing programming effects, with anatomical and molecular changes at the kidney, brain, and vascular levels that increase basal and induce blood pressure. However, the program- ming effects of the natriophilia proper of the perinatal period on blood pressure control have not yet been elucidated. In order to evaluate this, we studied the effect of a sodium overload challenge (SO) on blood pressure response and kidney and brain gene expression in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats showed a more sustained increase in blood pressure after SO than controls (PM-Ctrol). They also presented a reduced number of glomeruli, decreased expression of TRPV1, and increased expression of At1a in the kidney cortex. The relative expression of heteronuclear vaso- pressin (AVP hnRNA) and AVP in the supraoptic nucleus was unchanged after SO in PM-NaCl in contrast to the increase observed in PM-Ctrol. The data indicate that the availability of a rich source of sodium during the perinatal period induces a long-term effect modifying renal, cardiovascular, and neuroendocrine responses implicated in the control of hydroelectrolyte homeostasis.
Asunto(s)
Presión Sanguínea , Riñón , Cloruro de Sodio Dietético , Vasopresinas , Animales , Femenino , Masculino , Embarazo , Ratas , Riñón/metabolismo , Ratas Wistar , Cloruro de Sodio Dietético/farmacologíaRESUMEN
Aging is a complex biological process, resulting in gradual and progressive decline in structure and function in many organ systems. Our objective is to determine if structural changes produced by aging vary with sex in a stressful situation such as dehydration. The expression of Slc12a3 mRNA in the renal cortex, α-smooth muscle actin (α-SMA), and fibronectin was evaluated in male and female rats, aged 3 and 18 months, submitted and not submitted to water deprivation (WD) for 48 h, respectively. When comparing ages, 18-month-old males showed a lower expression of Slc12a3 mRNA than 3-month-old males, and control and WD 18-month-old male and female rats exhibited a higher expression of α-SMA than the respective 3-month-old rats. Fibronectin was higher in both control and WD 18-month-old males than the respective 3-month-old males. In females, only the control 18-month-old rats showed higher fibronectin than the control 3-month-old rats. When we compared sex, control and WD 3-month-old female rats had a lower expression of Slc12a3 mRNA than the respective males. The WD 18-month-old male rats presented a higher expression of fibronectin and α-SMA than the WD 18-month-old female rats. When we compared hydric conditions, the WD 18-month-old males displayed a lower relative expression of Slc12a3 mRNA and higher α-SMA expression than the control 18-month-old males. Aging, sex, and dehydration lead to alterations in kidney structure.
Asunto(s)
Deshidratación , Fibronectinas , Riñón , Animales , Femenino , Masculino , Ratas , Envejecimiento/genética , Deshidratación/genética , Fibronectinas/genética , Riñón/patología , ARN Mensajero/genética , Privación de AguaRESUMEN
Sodium appetite is a motivational state involving homeostatic behavior, seeking the ingest of salty substances after sodium loss. There is a temporal dissociation between sodium depletion (SD) and the appearance of sodium appetite. However, the responsible mechanisms for this delay remain poorly elucidated. In the present study, we measured the temporal changes at two and 24 h after SD in the gene expression of key elements within excitatory, inhibitory, and sensory areas implicated in the signaling pathways involved in the onset of sodium appetite. In SD rats, we observed that the expression of critical components within the brain control circuit of sodium appetite, including Angiotensin-type-1 receptor (Agtr1a), Oxytocin-(OXT-NP)-neurophysin-I, and serotonergic-(5HT)-type-2c receptor (Htr2c) were modulated by SD, regardless of time. However, we observed reduced phosphorylation of mitogen-activated protein kinases (MAPK) at the paraventricular nucleus (PVN) and increased oxytocin receptor (Oxtr) mRNA expression at the anteroventral of the third ventricle area (AV3V), at two hours after SD, when sodium appetite is inapparent. At twenty-four hours after SD, when sodium appetite is released, we observed a reduction in the mRNA expression of the transient receptor potential channel 1gene (Trpv1) and Oxtr in the AV3V and the dorsal raphe nucleus, respectively. The results indicate that SD exerts a coordinated timing effect, promoting the appearance of sodium appetite through changes in MAPK activity and lower Trpv1 channel and Oxtr expression that trigger sodium consumption to reestablish the hydroelectrolytic homeostasis.
Asunto(s)
Apetito , Sodio en la Dieta , Animales , Apetito/fisiología , Biomarcadores , Oxitocina , ARN Mensajero/farmacología , Ratas , Receptor de Angiotensina Tipo 1/metabolismo , Sodio/metabolismo , Sodio en la Dieta/metabolismoRESUMEN
Low-grade inflammation of the hypothalamus is associated with the disturbance of energy balance. The endocannabinoid system has been implicated in the development and maintenance of obesity as well as in the control of immune responses. The type 2 cannabinoid receptor (CB2) signaling has been associated with anti-inflammatory effects. Therefore, in high fat diet (HFD)-induced obese mice, we modulated CB2 signaling and investigated its effects on energy homeostasis and hypothalamic microgliosis/astrogliosis. We observed no effect on caloric intake and body weight gain in control diet-fed animals that received prolonged icv infusion of the CB2 receptor agonist HU308. Interestingly, we observed a decrease in glucose tolerance in HFD-fed animals treated with HU308. Prolonged icv infusion of HU308 increases astrogliosis in the ventromedial nucleus (VMH) of obese animals and reduced HFD-induced microgliosis in the hypothalamic arcuate (ARC) but not in the paraventricular (PVN) or VMH nuclei. These data indicate that central CB2 signaling modulates glucose homeostasis and glial reactivity in obesogenic conditions, irrespective of changes in body weight.
Asunto(s)
Dieta Alta en Grasa , Gliosis , Animales , Peso Corporal , Encéfalo , Dieta Alta en Grasa/efectos adversos , Glucosa , Hipotálamo , Ratones , Obesidad/etiologíaRESUMEN
Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.
Asunto(s)
Espiración , Neuronas , Animales , Hipercapnia , RatasRESUMEN
The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.
Asunto(s)
Epilepsia Refleja , Hipotálamo/metabolismo , Excitación Neurológica/fisiología , Sistemas Neurosecretores/metabolismo , Neurohipófisis/metabolismo , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Epilepsia Refleja/genética , Epilepsia Refleja/metabolismo , Epilepsia Refleja/patología , Epilepsia Refleja/fisiopatología , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Hipotálamo/patología , Hipotálamo/fisiopatología , Excitación Neurológica/patología , Masculino , Sistemas Neurosecretores/patología , Sistemas Neurosecretores/fisiopatología , Oxitocina/sangre , Oxitocina/genética , Oxitocina/metabolismo , Neurohipófisis/patología , Neurohipófisis/fisiopatología , Ratas , Ratas Wistar , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/fisiopatología , Convulsiones/psicología , Vasopresinas/sangre , Vasopresinas/genética , Vasopresinas/metabolismoRESUMEN
BACKGROUND/AIMS: Furosemide is a loop diuretic widely used in clinical practice for the treatment of oedema and hypertension. The aim of this study was to determine physiological and molecular changes in the hypothalamic-neurohypophysial system as a consequence of furosemide-induced sodium depletion. METHODS: Male rats were sodium depleted by acute furosemide injection (10 and 30 mg/kg) followed by access to low sodium diet and distilled water for 24 h. The renal and behavioural consequences were evaluated, while blood and brains were collected to evaluate the neuroendocrine and gene expression responses. RESULTS: Furosemide treatment acutely increases urinary sodium and water excretion. After 24 h, water and food intake were reduced, while plasma angiotensin II and corticosterone were increased. After hypertonic saline presentation, sodium-depleted rats showed higher preference for salt. Interrogation using RNA sequencing revealed the expression of 94 genes significantly altered in the hypothalamic paraventricular nucleus (PVN) of sodium-depleted rats (31 upregulated and 63 downregulated). Out of 9 genes chosen, 5 were validated by quantitative PCR in the PVN (upregulated: Ephx2, Ndnf and Vwf; downregulated: Caprin2 and Opn3). The same genes were also assessed in the supraoptic nucleus (SON, upregulated: Tnnt1, Mis18a, Nr1d1 and Dbp; downregulated: Caprin2 and Opn3). As a result of these plastic transcriptome changes, vasopressin expression was decreased in PVN and SON, whilst vasopressin and oxytocin levels were reduced in plasma. CONCLUSIONS: We thus have identified novel genes that might regulate vasopressin gene expression in the hypothalamus controlling the magnocellular neurons secretory response to body sodium depletion and consequently hypotonic stress.
Asunto(s)
Diuréticos/farmacología , Furosemida/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sodio/metabolismo , Transcriptoma/efectos de los fármacos , Equilibrio Hidroelectrolítico/efectos de los fármacos , Animales , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Transcriptoma/fisiología , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico/fisiologíaRESUMEN
The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg-1) was performed daily on postnatal days 8-16 to deplete brain serotonin content. During adulthood, elevated plus-maze, open field, social interaction, forced swimming, and food, saline, and sucrose intake tests were performed. Relative expression of serotonin neurotransmission components in several brain areas was determined by qPCR. Additionally, serotonin immunofluorescence and neuropeptide mRNA expression were assessed in dorsal raphe (DRN) and paraventricular (PVN) nuclei, respectively. Rat performance in behavioral tests demonstrated a general increase in locomotor activity and active escape behavior as well as decreased anxiety-like behavior after neonatal brain serotonin depletion. The behavioral programming effects due to neonatal serotonin depletion were more pronounced in females than males. At the gene expression level, the mRNA of Tph1 and Tph2 were lower in DRN while Htr2c was higher in the amygdala of pCPA-treated males, while Htr1a, Htr2c, Oxt, Avp, Crh, and Trh were not different in any treatments or sex in PVN. The results indicate that neonatal serotonin depletion has long-term consequences on locomotion and anxiety-like behavior associated with long-lasting molecular changes in the brain serotoninergic system in adult rats.
Asunto(s)
Envejecimiento/patología , Ansiolíticos/metabolismo , Serotonina/deficiencia , Caracteres Sexuales , Amígdala del Cerebelo/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal , Encéfalo/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Prueba de Laberinto Elevado , Conducta Alimentaria , Femenino , Regulación de la Expresión Génica , Masculino , Prueba de Campo Abierto , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Prefrontal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Serotonina/metabolismo , Interacción Social , NataciónRESUMEN
Aging affects the body composition and balance of energy metabolism. Here, we collected in a single work several physiological parameters to show how aging and sex differences can influence energy homeostasis. Body mass index (BMI), Lee index, glucose tolerance, glycemia, and lipidogram in fasting were measured in male and female Wistar rats at the ages of 2, 6, 9, 12, and 18 months. We also measured the lipid profile, free fatty acids, glycerol, glycemia, leptin, adiponectin, insulin, corticosterone (CORT), prolactin (PRL), thyroid stimulated hormone, and triiodothyronine (T3) in 3- and 18-month-old rats of both sexes, fed ad libitum. Animals were classified as obese beginning at 2 months in males and 6 months in females. Aged male rats showed hyperglycemia and glucose intolerance compared to young males and old females. In the ad libitum condition, the 18-month males presented higher serum levels of triglycerides, total cholesterol, and free fatty acids than females. The 18-month-old females had higher PRL and CORT concentration than males, but insulin and T3 were higher in 18-month-old males than females. Our work demonstrated that aging processes on energy metabolism in rats is sex specific, with a better lipid profile and glucose tolerance in aged females.
Asunto(s)
Envejecimiento/fisiología , Composición Corporal , Metabolismo Energético , Hormonas Peptídicas/metabolismo , Caracteres Sexuales , Envejecimiento/metabolismo , Animales , Femenino , Glucosa/metabolismo , Homeostasis , Metabolismo de los Lípidos , Masculino , Ratas , Ratas WistarRESUMEN
Maintenance of the volume and osmolality of body fluids is important, and the adaptive responses recruited to protect against osmotic stress are crucial for survival. The objective of this work was to compare the responses that occur in aging male and female rats during water deprivation. For this purpose, groups of male and female Wistar rats aged 3 mo (adults) or 18 mo (old) were submitted to water deprivation (WD) for 48 h. The water and sodium (0.15 M NaCl) intake, plasma concentrations of oxytocin (OT), arginine vasopressin (AVP), corticosterone (CORT), atrial natriuretic peptide (ANP), and angiotensin II (ANG II) were determined in hydrated and water-deprived animals. In response to WD, old male and female rats drank less water and saline than adults, and both adult and old females drank more water and saline than respective males. Dehydrated old animals displayed lower ANG II plasma concentration and CORT response compared with the respective normohydrated rats. Dehydrated adult males had higher plasma ANP and AVP as well as lower CORT concentrations than dehydrated adult females. Moreover, plasma OT and CORT levels of old female rats were higher than those in the dehydrated old male rats. Relative expression of ANG II type 1 receptor mRNA was decreased in the subfornical organ of adult and old male rats as well as adult female rats in response to WD. In conclusion, the study elucidated the effect of sex and age on responses induced by WD, altering the degree of dehydration induced by 48 h of WD.
Asunto(s)
Factores de Edad , Conducta Animal/fisiología , Deshidratación/fisiopatología , Factores Sexuales , Privación de Agua/fisiología , Animales , Arginina Vasopresina/metabolismo , Ingestión de Líquidos/efectos de los fármacos , Femenino , Masculino , Ratas Wistar , Cloruro de Sodio/farmacología , Órgano Subfornical/metabolismoRESUMEN
BACKGROUND: Changes in the nutritional supply during the perinatal period can lead to metabolic disturbances and obesity in adulthood. OBJECTIVE: The divergent litter size model was used to investigate the hypothalamic sensitivity to leptin and ghrelin as well as the mechanisms involved in the disruption of food intake and energy expenditure. METHODS: On postnatal day 3 (P3), male Wistar rats were divided into 3 groups: small litter (SL - 3 pups), normal litter (NL - 10 pups), and large litter (LL - 16 pups). Animals at P60 were intraperitoneally treated with leptin (500 µg/Kg), ghrelin (40 µg/Kg), or vehicle (0.9% NaCl) at 5 pm and the following parameters were assessed: food intake and body weight; immunostaining of p-STAT-3 in the hypothalamus; Western Blotting analysis of p-AMPKα and UCP2 in the mediobasal hypothalamus (MBH), and UCP1 in the interscapular brown adipose tissue (BAT); or heat production, VO2, VCO2, and locomotor activity. RESULTS: SL rats had earlier leptin and ghrelin surges, while LL rats had no variations. At P60, after leptin treatment, LL rats showed hypophagia and increased p-STAT-3 expression in the arcuate nucleus, but SL rats had no response. After ghrelin treatment, LL rats did not have the orexigenic response or AMPKα phosphorylation in the MBH, while SL animals, unexpectedly, decreased body weight gain, without changes in food intake, and increased metabolic parameters and UCP1 expression in the BAT. CONCLUSIONS: Changes in the nutritional supply at early stages of life modify leptin and ghrelin responsiveness in adulthood, programming metabolic and central mechanisms, which contribute to overweight and obesity in adulthood.
Asunto(s)
Ghrelina/metabolismo , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Desnutrición/metabolismo , Envejecimiento , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético/fisiología , Femenino , Tamaño de la Camada , Masculino , Obesidad/etiología , Embarazo , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismoRESUMEN
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Asunto(s)
Ghrelina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Animales , Metabolismo Energético , HumanosRESUMEN
The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.
Asunto(s)
Angiotensina II/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Receptor de Angiotensina Tipo 1/biosíntesis , Órgano Subfornical/citologíaRESUMEN
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
RESUMEN
Vasopressin (AVP) and oxytocin (OT) are essential for the control of extracellular fluid osmolality and volume. Secretion of these hormones is modulated by several mechanisms, including NMDA and AMPA L-glutamate receptors in magnocellular cells of paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei. Thus, to better understand the participation of L-glutamate on the neuroendocrine control of AVP and OT, this work evaluated the effects of intracerebroventricular (icv) NMDA and AMPA receptor antagonists on plasma AVP and OT levels induced by extracellular volume expansion (EVE). Cannulated rats received icv NMDA (AP5) and AMPA (NBQX) antagonists in 10 and 30nmol/5µl/rat doses and were subjected to either isotonic (0.15 M NaCl, 2ml/100g) or hypertonic (0.30 M NaCl, 2ml/100g) EVE. Blood samples were collected for plasma AVP and OT determination. Isotonic EVE did not change plasma AVP and OT levels, but hypertonic EVE increased both AVP and OT plasma levels. AP5 reduced plasma AVP, but it did not change the OT level induced by hypertonic EVE. On the other hand, NBQX reduced plasma OT, but did not alter the AVP plasma level. Our data shows that L-glutamate controls the secretion of neurohypophyseal hormones through the NMDA receptor for AVP release, and through the AMPA receptor for OT release, both in response to hypertonic EVE. This article is protected by copyright. All rights reserved.
RESUMEN
Chronic intermittent hypoxia (CIH) produces respiratory-related sympathetic overactivity and hypertension in rats. In this study, we tested the hypothesis that the enhanced central respiratory modulation of sympathetic activity after CIH also decreases the sympathoinhibitory component of baroreflex of rats, which may contribute to the development of hypertension. Wistar rats were exposed to CIH or normoxia (control group) for 10 days. Phrenic nerve, thoracic sympathetic nerve, and neurons in the rostral ventrolateral medulla and caudal ventrolateral medulla were recorded in in situ preparations of rats. Baroreflex regulation of thoracic sympathetic nerve, rostral ventrolateral medulla, and caudal ventrolateral medulla neurons activities were evaluated in different phases of respiration in response to either aortic depressor nerve stimulation or pressure stimuli. CIH rats presented higher respiratory-related thoracic sympathetic nerve and rostral ventrolateral medulla presympathetic neurons activities at the end of expiration in relation to control rats, which are indexes of respiratory-related sympathetic overactivity. Baroreflex-evoked thoracic sympathetic nerve inhibition during expiration, but not during inspiration, was enhanced in CIH when compared with control rats. In addition, CIH selectively enhanced the expiratory-related baroreceptor inputs, probably through caudal ventrolateral medulla neurons, to the respiratory-modulated bulbospinal rostral ventrolateral medulla presympathetic neurons. These findings support the concept that the onset of hypertension, mediated by sympathetic overactivity, after 10 days of CIH is not secondary to a reduction in sympathoinhibitory component of baroreflex. Instead, it was observed an increase in the gain of sympathoinhibitory component in in situ preparations of rats, suggesting that changes in the respiratory-related sympathetic network after CIH also play a key role in preventing greater increase in arterial pressure.