Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 236: 309-316, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30738301

RESUMEN

The aims of this work were to characterize the sorption and evaluate the inhibitory effect of octylphenol ethoxylate Triton X-100 (OPEOTx) on methanogenic and denitrifying sludges. According to Langmuir isotherm, maximums OPEOTx sorption values on methanogenic and denitrifying sludges were 60.70 mg (gVSS)-1 and 87.47 mg (gVSS)-1 respectively. The specific removal rate of chemical oxygen demand (rCOD) and the accumulated volume biogas (VBG) were used to evaluate the OPEOTx inhibitory effect on sludges. Experimental inhibition data were fitted to the models of non-competitive inhibition and modified Gompertz. Methanogenic sludges reached higher levels inhibition in the rCOD and biogas production potential Pmax (84.0 and 88.5%) comparing with denitrifying sludges (24.3 and 21.9%). Furthermore, in all OPEOTx concentrations, carbohydrates-proteins quotient value of the extracellular polymeric substances for the denitrifying sludges remained below respect to the same quotient in methanogenic sludges. The above contributes in part to explain the greater sorption capacity of the denitrifying sludges by OPEOTx and their granules resistance to be damaged by OPEOTx amphiphilic nature. The study gives insights to understand OPEOs interactions and their effects on methanogenic and denitrifying granular sludges.


Asunto(s)
Fenoles , Aguas del Alcantarillado , Reactores Biológicos , Octoxinol
2.
Bioresour Technol ; 123: 452-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22940355

RESUMEN

A biodecolorization model that considers the simultaneous mechanism of biosorption and biodegradation of a synthetic dye by immobilized white-rot fungus Trametes subectypus B32 in a fixed bed bioreactor was developed. The model parameters (biokinetic, biosorption and macroscopic transport) were determined by independent experiments. The biodecolorization model was used to determine the effect of variables such as immobilized biomass content, volumetric flow of wastewater, dye feeding concentration and initial dye concentration. By means of the model was possible to predict in the steady state, the limits of immobilized T. subectypus to biodecolorize polluted influent, being the model predictions similar in extent to previous reports. A dimensionless module of biosorption-bioreaction (ϕ=q(max)v(z)/r(max)L) was proposed to be used like criterion whenever one of the two mechanisms controls the biodecolorization. The model could be used for the designing and scaling up of fixed bed bioreactors with immobilized white-rot fungi for the biodecolorization process.


Asunto(s)
Reactores Biológicos/microbiología , Modelos Químicos , Trametes/metabolismo , Triazinas/metabolismo , Aguas Residuales/microbiología , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Adsorción , Biodegradación Ambiental , Biomasa , Color , Simulación por Computador , Cinética , Lacasa/metabolismo , Movimiento (Física) , Factores de Tiempo , Trametes/enzimología , Contaminantes Químicos del Agua/aislamiento & purificación
3.
Can J Microbiol ; 51(3): 231-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15920621

RESUMEN

We studied the use of sequential batch reactors under oxygen limitation to improve and maintain consortium ability to biodegrade hydrocarbons. Air-agitated tubular reactors (2.5 L) were operated for 20 sequential 21-day cycles. Maya crude oil-paraffin mixture (13,000 mg/L) was used as the sole carbon source. The reactors were inoculated with a consortium from the rhizosphere of Cyperus laxus, a native plant that grows naturally in weathered, contaminated soil. Oxygen limitation was induced in the tubular reactor by maintaining low oxygen transfer coefficients (k(L)a < 20.6 h(-1)). The extent and biodegradation rates increased significantly up to the fourth cycle, maintaining values of about 66.33% and 460 mg x L(-1) x d(-1), respectively. Thereafter, sequential batch reactor operation exhibited a pattern with a constant general trend of biodegradation. The effect of oxygen limitation on consortium activity led to a low biomass yield and non-soluble metabolite (0.45 g SS/g hydrocarbons consumed). The average number of hydrocarbon-degrading microorganisms increased from 6.5 x 10(7) (cycles 1-3) to 2.2 x 10(8) (cycles 4-20). Five bacterial strains were identified: Achromobacter (Alcaligenes) xylosoxidans, Bacillus cereus, Bacillus subtilis, Brevibacterium luteum, and Pseudomonas pseudoalcaligenes. Asphaltene-free total petroleum hydrocarbons, extracted from a weathered, contaminated soil, were also biodegraded (97.1 mg x L(-1) x d(-1)) and mineralized (210.48 mg CO2 x L(-1) x d(-1)) by the enriched consortium without inhibition. Our results indicate that sequential batch reactors under oxygen limitation can be used to produce consortia with high and constant biodegradation ability for industrial applications of bioremediation.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos , Hidrocarburos/metabolismo , Oxígeno/farmacología , Petróleo/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Recuento de Colonia Microbiana , Microbiología Industrial/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...