Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 808-816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979525

RESUMEN

Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.

2.
Phys Chem Chem Phys ; 26(3): 2260-2268, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165403

RESUMEN

In this study, we investigated the mechanical behavior of pristine copper (Cu) nanoparticles (NPs) and Cu@graphene (Cu@G) hybrid NPs using molecular dynamics simulations. The longitudinal engineering strain was calculated as a measure of compression until reaching 25% of the initial size of the NPs. The stress-strain curves revealed the elastic-to-plastic transition in the Cu NPs at a longitudinal strain of 3.57% with a yield strength of 6.15 GPa. On the other hand, the Cu@G NPs exhibited a maximum average load point at a longitudinal strain of 6.81% with a yield strength of 8.26 GPa. The hybrid Cu@G NPs showed increased strength and resistance to plastic deformation compared to the pure Cu NPs, while the calculation of the elastic modulus indicated a higher load resistance provided by the graphene coverage for the Cu@G NPs. Furthermore, the analysis of atomic configurations, dislocations, and stress distribution demonstrated that the graphene flakes play a crucial role in preventing dislocation events and faceting in the Cu@G NPs by acting as a shock absorber, distributing the applied force on themselves, and producing a more homogeneous stress distribution on the Cu NPs; additionally, they prevent the movement of Cu atoms, reducing the occurrence of dislocations and surface faceting, thanks to their supportive effect. Overall, our findings highlight the potential of hybrid nanomaterials, such as Cu@G, for enhancing the mechanical properties of metallic NPs, which could have significant implications for the development of advanced nanomaterials with improved performance in a variety of applications.

3.
Faraday Discuss ; 242(0): 23-34, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36200857

RESUMEN

In this work, nanoindentation of spherical NiCo nanoalloys with core-shell and random mixing patterns was studied, and we compared them against monometallic nanoparticles in order to investigate how the mechanical response may be influenced by the elemental distribution and the proportion of each element. Independently of the mixing patterns, plasticity begins with the nucleation of Shockley partial dislocations (SPDs) at the nanoparticle surface, on several slip planes, which leads to the appearance of sessile dislocations and either a stacking fault pyramid (SFP) or an open pyramid at the poles of the spherical nanoalloys. SPDs leave behind stacking faults but, for core-shell structures, the formation of nanotwins was also observed. It was also found that the presence of Co in the external shell of the nanoparticle has the effect of raising the yield strength, which could be interpreted in terms of unstable stacking fault energy. These results have relevance in the design of nanoalloys, since elemental distribution and stoichiometry can be used to tune the desired mechanical properties of the nanoparticle.

4.
Colloids Surf B Biointerfaces ; 170: 572-577, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975905

RESUMEN

Fractal behavior is found on the topographies of pericellular brushes on the surfaces of model healthy and cancerous cells, using dissipative particle dynamics models and simulations. The influence of brush composition, chain stiffness and solvent quality on the fractal dimension is studied in detail. Since fractal dimension alone cannot guarantee that the brushes possess fractal properties, their lacunarity was obtained also, which is a measure of the space filling capability of fractal objects. Soft polydisperse brushes are found to have larger fractal dimension than soft monodisperse ones, under poor solvent conditions, in agreement with recent experiments on dried cancerous and healthy human cervical epithelial cells. Additionally, we find that image resolution is critical for the accurate assessment of differences between images from different cells. The images of the brushes on healthy model cells are found to be more textured than those of brushes on model cancerous cells, as indicated by the larger lacunarity of the former. These findings are helpful to distinguish monofractal behavior from multifractality, which has been found to be useful to discriminate between immortal, cancerous and normal cells in recent experiments.


Asunto(s)
Cuello del Útero/citología , Cuello del Útero/patología , Células Epiteliales/citología , Células Epiteliales/patología , Fractales , Neoplasias del Cuello Uterino/patología , Femenino , Humanos , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
5.
Materials (Basel) ; 4(2): 368-379, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-28879995

RESUMEN

We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

6.
J Phys Chem B ; 110(44): 22230-6, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17078663

RESUMEN

The phase diagram of a two-dimensional model system for colloidal particles at the air-water interface was determined using Monte Carlo computer simulations in the isothermic-isobaric ensemble. The micrometer-range binary colloidal interaction has been modeled by hard disklike particles interacting via a secondary minimum followed by a weaker longer-range repulsive maximum, both of the order of kBT. The repulsive part of the potential drives the clustering of particles at low densities and low temperatures. Pinned voids are formed at higher densities and intermediate values of the surface pressure. The analysis of isotherms, translational and orientational correlation functions as well as structure factor gives clear evidence of the presence of a melting first-order transition. However, the melting process can be also followed by a metastable route through a hexatic phase at low surface pressures and low temperatures, before crystalization occurs at higher surface pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA