Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21250320

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 5680 were "novel" SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.

2.
Cancer Res ; 78(3): 830-839, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187407

RESUMEN

Increasing evidence shows that tumor clonal architectures are often the consequence of a complex branching process, yet little is known about the expected dynamics and extent to which these divergent subclonal expansions occur. Here, we develop and implement more than 88,000 instances of a stochastic evolutionary model simulating genetic drift and neoplastic progression. Under different combinations of population genetic parameter values, including those estimated for colorectal cancer and glioblastoma multiforme, the distribution of sizes of subclones carrying driver mutations had a heavy right tail at the time of tumor detection, with only 1 to 4 dominant clones present at ≥10% frequency. In contrast, the vast majority of subclones were present at <10% frequency, many of which had higher fitness than currently dominant clones. The number of dominant clones (≥10% frequency) in a tumor correlated strongly with the number of subclones (<10% of the tumor). Overall, these subclones were frequently below current standard detection thresholds, frequently harbored treatment-resistant mutations, and were more common in slow-growing tumors.Significance: The model presented in this paper addresses tumor heterogeneity by framing expectations for the number of resistant subclones in a tumor, with implications for future studies of the evolution of therapeutic resistance. Cancer Res; 78(3); 830-9. ©2017 AACR.


Asunto(s)
Evolución Clonal , Neoplasias Colorrectales/patología , Glioblastoma/patología , Modelos Teóricos , Mutación , Programas Informáticos , Neoplasias Colorrectales/genética , Glioblastoma/genética , Humanos
3.
Genome Biol ; 17(1): 244, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899139

RESUMEN

A new study on sex chromosome evolution in papaya helps to illuminate sex chromosome biology, including deviations from expected trajectories.Please see related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1095-9.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Variación Genética , Cromosomas Sexuales/genética , Carica/genética , Carica/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...