Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38844370

RESUMEN

BACKGROUND AND PURPOSE: Considering recent iodinated contrast shortages and a focus on reducing waste, developing protocols with lower contrast dosing while maintaining image quality through artificial intelligence is needed. This study compared reduced iodinated contrast media and standard dose CTP acquisitions, and the impact of deep learning denoising on CTP image quality in preclinical and clinical studies. The effect of reduced X-ray mAs dose was also investigated in preclinical studies. MATERIALS AND METHODS: Twelve swine underwent 9 CTP examinations each, performed at combinations of 3 different x-ray (37, 67, and 127 mAs) and iodinated contrast media doses (10, 15, and 20 mL). Clinical CTP acquisitions performed before and during the iodinated contrast media shortage and protocol change (from 40 to 30 mL) were retrospectively included. Eleven patients with reduced iodinated contrast media dosages and 11 propensity-score-matched controls with the standard iodinated contrast media dosages were included. A residual encoder-decoder convolutional neural network (RED-CNN) was trained for CTP denoising using k-space-weighted image average filtered CTP images as the target. The standard, RED-CNN-denoised, and k-space-weighted image average noise-filtered images for animal and human studies were compared for quantitative SNR and qualitative image evaluation. RESULTS: The SNR of animal CTP images decreased with reductions in iodinated contrast media and milliampere-second doses. Contrast dose reduction had a greater effect on SNR than milliampere-second reduction. Noise-filtering by k-space-weighted image average and RED-CNN denoising progressively improved the SNR of CTP maps, with RED-CNN resulting in the highest SNR. The SNR of clinical CTP images was generally lower with a reduced iodinated contrast media dose, which was improved by the k-space-weighted image average and RED-CNN denoising (P < .05). Qualitative readings consistently rated RED-CNN denoised CTP as the best quality, followed by k-space-weighted image average and then standard CTP images. CONCLUSIONS: Deep learning-denoising can improve image quality for low iodinated contrast media CTP protocols, and could approximate standard iodinated contrast media dose CTP, in addition to potentially improving image quality for low milliampere-second acquisitions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37179739

RESUMEN

Goal: Identifying population differences can serve as an insightful tool for diagnostic radiology. To do so, a reliable preprocessing framework and data representation are vital. Methods: We build a machine learning model to visualize gender differences in the circle of Willis (CoW), an integral part of the brain's vasculature. We start with a dataset of 570 individuals and process them for analysis using 389 for the final analysis. Results: We find statistical differences between male and female patients in one image plane and visualize where they are. We can see differences between the right and left-hand sides of the brain confirmed using Support Vector Machines (SVM). Conclusion: This process can be applied to detect population variations in the vasculature automatically. Significance: It can guide debugging and inferring complex machine learning algorithms such as SVM and deep learning models.

3.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33004417

RESUMEN

Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.


Asunto(s)
Memoria , Pez Cebra , Animales , Animales Modificados Genéticamente , Larva , Locomoción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA