Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Epigenomes ; 8(3)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39051183

RESUMEN

The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.

2.
Genes (Basel) ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927734

RESUMEN

Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos , Transducción de Señal , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Humanos , Animales
3.
Cells ; 13(2)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38247824

RESUMEN

The differentiation of ESCs into cardiomyocytes in vitro is an excellent and reliable model system for studying normal cardiomyocyte development in mammals, modeling cardiac diseases, and for use in drug screening. Mouse ESC differentiation still provides relevant biological information about cardiac development. However, the current methods for efficiently differentiating ESCs into cardiomyocytes are limiting. Here, we describe the "WNT Switch" method to efficiently commit mouse ESCs into cardiomyocytes using the small molecule WNT signaling modulators CHIR99021 and XAV939 in vitro. This method significantly improves the yield of beating cardiomyocytes, reduces number of treatments, and is less laborious.


Asunto(s)
Enfermedades Hereditarias del Ojo , Células Madre Embrionarias de Ratones , Miocitos Cardíacos , Degeneración Retiniana , Trastornos de la Visión , Animales , Ratones , Diferenciación Celular , Evaluación Preclínica de Medicamentos , Mamíferos
4.
J Biol Chem ; 299(10): 105257, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716702

RESUMEN

RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase-MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases.


Asunto(s)
Bioensayo , Metiltransferasas , Desarrollo de Medicamentos , Metiltransferasas/metabolismo , ARN , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Zika/enzimología , Perfilación de la Expresión Génica , Epigénesis Genética , Bioensayo/métodos , Biotinilación , Estructura Terciaria de Proteína
6.
Cell Rep ; 42(6): 112587, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294637

RESUMEN

Embryonic expression of DNMT3B is critical for establishing de novo DNA methylation. This study uncovers the mechanism through which the promoter-associated long non-coding RNA (lncRNA) Dnmt3bas controls the induction and alternative splicing of Dnmt3b during embryonic stem cell (ESC) differentiation. Dnmt3bas recruits the PRC2 (polycomb repressive complex 2) at cis-regulatory elements of the Dnmt3b gene expressed at a basal level. Correspondingly, Dnmt3bas knockdown enhances Dnmt3b transcriptional induction, whereas overexpression of Dnmt3bas dampens it. Dnmt3b induction coincides with exon inclusion, switching the predominant isoform from the inactive Dnmt3b6 to the active Dnmt3b1. Intriguingly, overexpressing Dnmt3bas further enhances the Dnmt3b1:Dnmt3b6 ratio, attributed to its interaction with hnRNPL (heterogeneous nuclear ribonucleoprotein L), a splicing factor that promotes exon inclusion. Our data suggest that Dnmt3bas coordinates alternative splicing and transcriptional induction of Dnmt3b by facilitating the hnRNPL and RNA polymerase II (RNA Pol II) interaction at the Dnmt3b promoter. This dual mechanism precisely regulates the expression of catalytically active DNMT3B, ensuring fidelity and specificity of de novo DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Células Madre Embrionarias/metabolismo , Exones/genética , Complejo Represivo Polycomb 2/metabolismo , Ratones , ADN Metiltransferasa 3B , Animales
7.
NAR Cancer ; 3(4): zcab045, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870206

RESUMEN

In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA