Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biochem Cell Biol ; 44(4): 620-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22230369

RESUMEN

Ceramides are known to be key players in intracellular signaling and are involved in apoptosis, cell senescence, proliferation, cell growth and differentiation. They are synthesized by ceramide synthases (CerS). So far, six different mammalian CerS (CerS1-6) have been described. Recently, we demonstrated that human breast cancer tissue displays increased activity of CerS2, 4, and 6, together with enhanced generation of their products, ceramides C(16:0), C(24:0), and C(24:1). Moreover, these increases were significantly associated with tumor dignity. To clarify the impact of this observation, we manipulated cellular ceramide levels by overexpressing ceramide synthases 2, 4 or 6 in MCF-7 (breast cancer) and HCT-116 (colon cancer) cells, respectively. Overexpression of ceramide synthases 4 and 6 elevated generation of short chain ceramides C(16:0), C(18:0) and C(20:0), while overexpression of ceramide synthase 2 had no effect on ceramide production in vivo, presumably due to limited substrate availability, because external addition of very long chain acyl-CoAs resulted in a significant upregulation of very long chain ceramides. We also demonstrated that upregulation of CerS4 and 6 led to the inhibition of cell proliferation and induction of apoptosis, whereas upregulation of CerS2 increased cell proliferation. On the basis of our data, we propose that a disequilibrium between ceramides of various chain length is crucial for cancer progression, while normal cells require an equilibrium between very long and long chain ceramides for normal physiology.


Asunto(s)
Neoplasias de la Mama/patología , Ceramidas/química , Ceramidas/metabolismo , Neoplasias del Colon/patología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ceramidas/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transfección
2.
Am J Blood Res ; 1(1): 1-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22432062

RESUMEN

So far, about 800 different chromosomal translocations have been characterized in hemato-malignant and solid tumors. Chromosomal translocations mostly result in the expression of chimeric fusion proteins associated with enhanced proliferation and/or malignant transformation. Here, we demonstrate that genes frequently involved in such genetic rearrangements exhibit a unique feature: premature transcriptional termination. These early-terminated RNA molecules have an abundance of 10-20% when compared to their cognate full-length transcripts. They exhibit an unsaturated splice donor site that gives rise to trans-splicing events, leading to RNAs displaying exon repetitions or chimeric fusion RNAs. These arbitrary fusion RNAs mimic the presence of a chromosomal translocation in genetically unaffected cells. Based on our and published data, we propose the hypothesis that these artificial "chimeric fusion transcripts" may influence DNA repair processes, resulting in the generation of de novo chromosomal translocations. This idea provides a rational explanation why different individuals suffer from nearly identical genetic rearrangements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...