Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2875, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570497

RESUMEN

The characterization of protein-protein interactions (PPIs) is fundamental to the understanding of biochemical processes. Many methods have been established to identify and study direct PPIs; however, screening and investigating PPIs involving large or poorly soluble proteins remains challenging. Here, we introduce ReLo, a simple, rapid, and versatile cell culture-based method for detecting and investigating interactions in a cellular context. Our experiments demonstrate that ReLo specifically detects direct binary PPIs. Furthermore, we show that ReLo bridging experiments can also be used to determine the binding topology of subunits within multiprotein complexes. In addition, ReLo facilitates the identification of protein domains that mediate complex formation, allows screening for interfering point mutations, and it is sensitive to drugs that mediate or disrupt an interaction. In summary, ReLo is a simple and rapid alternative for the study of PPIs, especially when studying structurally complex proteins or when established methods fail.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(32): e2304385120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523566

RESUMEN

Drosophila Smaug and its orthologs comprise a family of mRNA repressor proteins that exhibit various functions during animal development. Smaug proteins contain a characteristic RNA-binding sterile-α motif (SAM) domain and a conserved but uncharacterized N-terminal domain (NTD). Here, we resolved the crystal structure of the NTD of the human SAM domain-containing protein 4A (SAMD4A, a.k.a. Smaug1) to 1.6 Å resolution, which revealed its composition of a homodimerization D subdomain and a subdomain with similarity to a pseudo-HEAT-repeat analogous topology (PHAT) domain. Furthermore, we show that Drosophila Smaug directly interacts with the Drosophila germline inducer Oskar and with the Hedgehog signaling transducer Smoothened through its NTD. We determined the crystal structure of the NTD of Smaug in complex with a Smoothened α-helical peptide to 2.0 Å resolution. The peptide binds within a groove that is formed by both the D and PHAT subdomains. Structural modeling supported by experimental data suggested that an α-helix within the disordered region of Oskar binds to the NTD of Smaug in a mode similar to Smoothened. Together, our data uncover the NTD of Smaug as a peptide-binding domain.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas de Unión al ARN , Proteínas Represoras , Animales , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores Acoplados a Proteínas G
3.
Nucleic Acids Res ; 51(8): 3950-3970, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951092

RESUMEN

Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.


Asunto(s)
Proteínas de Drosophila , Animales , Humanos , Proteínas de Drosophila/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Ribonucleasas/genética , Ribonucleasas/metabolismo , Receptores CCR4/genética
4.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226277

RESUMEN

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Portadoras/química , Chaetomium/genética , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/química , ADN/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chaetomium/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cromosomas/ultraestructura , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Elife ; 72018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30109982

RESUMEN

The cohesin ring complex is required for numerous chromosomal transactions including sister chromatid cohesion, DNA damage repair and transcriptional regulation. How cohesin engages its chromatin substrate has remained an unresolved question. We show here, by determining a crystal structure of the budding yeast cohesin HEAT-repeat subunit Scc3 bound to a fragment of the Scc1 kleisin subunit and DNA, that Scc3 and Scc1 form a composite DNA interaction module. The Scc3-Scc1 subcomplex engages double-stranded DNA through a conserved, positively charged surface. We demonstrate that this conserved domain is required for DNA binding by Scc3-Scc1 in vitro, as well as for the enrichment of cohesin on chromosomes and for cell viability. These findings suggest that the Scc3-Scc1 DNA-binding interface plays a central role in the recruitment of cohesin complexes to chromosomes and therefore for cohesin to faithfully execute its functions during cell division.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/administración & dosificación , Proteínas de Ciclo Celular/química , División Celular/genética , Cromatina/química , Proteínas Cromosómicas no Histona/administración & dosificación , Proteínas Cromosómicas no Histona/química , Cromosomas/química , ADN/química , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Complejos Multiproteicos , Proteínas de Saccharomyces cerevisiae/química , Cohesinas
6.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988770

RESUMEN

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Chaetomium/metabolismo , Cromosomas/química , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Eucariontes/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
7.
Cell Rep ; 14(9): 2116-2126, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26923589

RESUMEN

Sister chromatid cohesion is a fundamental prerequisite to faithful genome segregation. Cohesion is precisely regulated by accessory factors that modulate the stability with which the cohesin complex embraces chromosomes. One of these factors, Pds5, engages cohesin through Scc1 and is both a facilitator of cohesion, and, conversely also mediates the release of cohesin from chromatin. We present here the crystal structure of a complex between budding yeast Pds5 and Scc1, thus elucidating the molecular basis of Pds5 function. Pds5 forms an elongated HEAT repeat that binds to Scc1 via a conserved surface patch. We demonstrate that the integrity of the Pds5-Scc1 interface is indispensable for the recruitment of Pds5 to cohesin, and that its abrogation results in loss of sister chromatid cohesion and cell viability.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Segregación Cromosómica , Cromosomas Fúngicos/fisiología , Cristalografía por Rayos X , Viabilidad Microbiana , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Homología Estructural de Proteína , Cohesinas
8.
Nat Struct Mol Biol ; 21(6): 560-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24837193

RESUMEN

Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.


Asunto(s)
Adenosina Trifosfatasas/química , Cromosomas/metabolismo , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Sitios de Unión , Cromosomas/química , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Alineación de Secuencia , Análisis de Secuencia de Proteína
9.
Dev Cell ; 27(4): 469-78, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286828

RESUMEN

Successful segregation of chromosomes during mitosis and meiosis depends on the action of the ring-shaped condensin complex, but how condensin ensures the complete disjunction of sister chromatids is unknown. We show that the failure to segregate chromosome arms, which results from condensin release from chromosomes by proteolytic cleavage of its ring structure, leads to a DNA damage checkpoint-dependent cell-cycle arrest. Checkpoint activation is triggered by the formation of chromosome breaks during cytokinesis, which proceeds with normal timing despite the presence of lagging chromosome arms. Remarkably, enforcing condensin ring reclosure by chemically induced dimerization just before entry into anaphase is sufficient to restore chromosome arm segregation. We suggest that topological entrapment of chromosome arms by condensin rings ensures their clearance from the cleavage plane and thereby avoids their breakage during cytokinesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Rotura Cromosómica , Segregación Cromosómica , Cromosomas Fúngicos/genética , Citocinesis/fisiología , Proteínas de Unión al ADN/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Saccharomyces cerevisiae/genética
10.
Nat Struct Mol Biol ; 18(8): 894-901, 2011 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-21765419

RESUMEN

The multisubunit condensin complex is essential for the structural organization of eukaryotic chromosomes during their segregation by the mitotic spindle, but the mechanistic basis for its function is not understood. To address how condensin binds to and structures chromosomes, we have isolated from Saccharomyces cerevisiae cells circular minichromosomes linked to condensin. We find that either linearization of minichromosome DNA or proteolytic opening of the ring-like structure formed through the connection of the two ATPase heads of condensin's structural maintenance of chromosomes (SMC) heterodimer by its kleisin subunit eliminates their association. This suggests that condensin rings encircle chromosomal DNA. We further show that release of condensin from chromosomes by ring opening in dividing cells compromises the partitioning of chromosome regions distal to centromeres. Condensin hence forms topological links within chromatid arms that provide the arms with the structural rigidity necessary for their segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Sitios de Unión , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
11.
Cell ; 134(4): 634-45, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724936

RESUMEN

Tail-anchored (TA) proteins, defined by the presence of a single C-terminal transmembrane domain (TMD), play critical roles throughout the secretory pathway and in mitochondria, yet the machinery responsible for their proper membrane insertion remains poorly characterized. Here we show that Get3, the yeast homolog of the TA-interacting factor Asna1/Trc40, specifically recognizes TMDs of TA proteins destined for the secretory pathway. Get3 recognition represents a key decision step, whose loss can lead to misinsertion of TA proteins into mitochondria. Get3-TA protein complexes are recruited for endoplasmic reticulum (ER) membrane insertion by the Get1/Get2 receptor. In vivo, the absence of Get1/Get2 leads to cytosolic aggregation of Get3-TA complexes and broad defects in TA protein biogenesis. In vitro reconstitution demonstrates that the Get proteins directly mediate insertion of newly synthesized TA proteins into ER membranes. Thus, the GET complex represents a critical mechanism for ensuring efficient and accurate targeting of TA proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas , Proteínas de la Membrana/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
12.
J Cell Biol ; 179(2): 209-17, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17954604

RESUMEN

Arginine (R)-based ER localization signals are sorting motifs that confer transient ER localization to unassembled subunits of multimeric membrane proteins. The COPI vesicle coat binds R-based signals but the molecular details remain unknown. Here, we use reporter membrane proteins based on the proteolipid Pmp2 fused to GFP and allele swapping of COPI subunits to map the recognition site for R-based signals. We show that two highly conserved stretches--in the beta- and delta-COPI subunits--are required to maintain Pmp2GFP reporters exposing R-based signals in the ER. Combining a deletion of 21 residues in delta-COP together with the mutation of three residues in beta-COP gave rise to a COPI coat that had lost its ability to recognize R-based signals, whilst the recognition of C-terminal di-lysine signals remained unimpaired. A homology model of the COPI trunk domain illustrates the recognition of R-based signals by COPI.


Asunto(s)
Proteína Coatómero/química , Proteína Coatómero/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo 1 de Proteína Adaptadora/metabolismo , Secuencia de Aminoácidos , Arginina , Sitios de Unión , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Genes Fúngicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Homología Estructural de Proteína
13.
J Biol Chem ; 281(1): 410-7, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16260785

RESUMEN

Cellular ion homeostasis involves communication between the cytosol and the luminal compartment of organelles. This is particularly critical for metal ions because of their toxic potential. We have identified the yeast homologue of the prokaryotic ArsA protein, the homodimeric ATPase Arr4p, as a protein that binds to the yeast intracellular CLC chloride-transport protein, Gef1p. We show that binding of Arr4p to the C terminus of Gef1p requires the presence of yeast cytosol and is sensitive to a highly specific copper chelator in vitro and in vivo. Copper alone can substitute for cytosol to support the interaction of Arr4p with the C terminus of Gef1p. The migration behavior of Arr4p in nonreducing gel electrophoresis correlates with cellular copper deficiency, repletion, or stress. Our homology model of Arr4p shows that the antimony (arsenic) metal binding site of ArsA is not conserved in Arr4p. The model suggests that a pair of cysteines, Cys285 and Cys288, is located in the interface of the Arr4p dimer. These residues are required for Arr4p homodimerization and for binding to the C terminus of Gef1p. Whereas both proteins are required for normal growth under iron-limiting conditions, they play opposite roles when copper and heat stress are combined in an alkaline environment. Under these conditions, deltagef1 cells grow much better than wild type yeast, whereas deltaarr4 cells are unable to grow. Comparison of the deltaarr4 with the deltaarr4deltagef1 strain suggests that Arr4p antagonizes the function of Gef1p.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Canales de Cloruro/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/inmunología , Animales , Anticuerpos , Arseniato Reductasas , ATPasas Transportadoras de Arsenitos , Cloruros/metabolismo , Citosol/metabolismo , Dimerización , Cobayas , Respuesta al Choque Térmico , Bombas Iónicas , Complejos Multienzimáticos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA