Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 143(1): 161-174, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800012

RESUMEN

Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.


Asunto(s)
Ataxia/genética , Canales de Calcio Tipo N/genética , Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/genética , Neuronas/metabolismo , Tálamo/metabolismo , Potenciales de Acción , Factores de Edad , Animales , Ataxia/metabolismo , Ataxia/fisiopatología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Inhibidores/genética , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Núcleos Talámicos/citología , Tálamo/fisiopatología
2.
Cell Rep ; 16(6): 1677-1689, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477277

RESUMEN

Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.


Asunto(s)
Plasticidad Neuronal , Sinapsis/fisiología , Transmisión Sináptica , Corteza Visual/crecimiento & desarrollo , Animales , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Parvalbúminas/farmacología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Corteza Visual/efectos de los fármacos
3.
J Neurosci ; 35(25): 9336-55, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109658

RESUMEN

In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.


Asunto(s)
Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transdiferenciación Celular/fisiología , Técnicas de Transferencia de Gen , Mesencéfalo/metabolismo , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Dependovirus , Citometría de Flujo , Vectores Genéticos , Inmunohistoquímica , Mesencéfalo/citología , Ratones , Ratones Mutantes , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción Genética
4.
Sheng Li Xue Bao ; 66(4): 387-97, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25131780

RESUMEN

Perineuronal nets (PNNs) are reticular structures resulting from the aggregation of extracellular matrix (ECM) molecules around the cell body and proximal neurite of specific population of neurons in the central nervous system (CNS). Since the first description of PNNs by Camillo Golgi in 1883, the molecular composition, developmental formation and potential functions of these specialized extracellular matrix structures have only been intensively studied over the last few decades. The main components of PNNs are hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs) of the lectican family, link proteins and tenascin-R. PNNs appear late in neural development, inversely correlating with the level of neural plasticity. PNNs have long been hypothesized to play a role in stabilizing the extracellular milieu, which secures the characteristic features of enveloped neurons and protects them from the influence of malicious agents. Aberrant PNN signaling can lead to CNS dysfunctions like epilepsy, stroke and Alzheimer's disease. On the other hand, PNNs create a barrier which constrains the neural plasticity and counteracts the regeneration after nerve injury. Digestion of PNNs with chondroitinase ABC accelerates functional recovery from the spinal cord injury and restores activity-dependent mechanisms for modifying neuronal connections in the adult animals, indicating that PNN is an important regulator of neural plasticity. Here, we review recent progress in the studies on the formation of PNNs during early development and the identification of CSPG receptor - an essential molecular component of PNN signaling, along with a discussion on their unique regulatory roles in neural plasticity.


Asunto(s)
Matriz Extracelular/fisiología , Plasticidad Neuronal , Receptores de Superficie Celular/fisiología , Animales , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/fisiopatología , Proteoglicanos Tipo Condroitín Sulfato , Humanos , Neuronas
5.
Matrix Biol ; 32(6): 352-63, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23597636

RESUMEN

Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2-6 during postnatal days (PD) 10-28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca(2+) binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors - Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2-6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Matriz Extracelular/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Corteza Visual/metabolismo , Agrecanos/biosíntesis , Animales , Animales Recién Nacidos , Oscuridad , Matriz Extracelular/genética , Matriz Extracelular/patología , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/biosíntesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Ácido Hialurónico/biosíntesis , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Neuronas/citología , Proteínas Nogo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Lectinas de Plantas/química , Proteoglicanos/biosíntesis , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Receptores N-Acetilglucosamina/química , Transducción de Señal , Tenascina/biosíntesis , Corteza Visual/citología , Corteza Visual/crecimiento & desarrollo
7.
J Neurosci ; 29(42): 13222-31, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19846710

RESUMEN

Homeostatic regulation of synaptic strength in response to persistent changes of neuronal activity plays an important role in maintaining the overall level of circuit activity within a normal range. Absence of miniature EPSCs (mEPSCs) for a few hours is known to cause upregulation of excitatory synaptic strength, suggesting that mEPSCs contribute to the maintenance of excitatory synaptic functions. In the present study, we found that the absence of mEPSCs for 1-3 h also resulted in homeostatic suppression of presynaptic functions of inhibitory synapses in acute cortical slices from juvenile rats, as suggested by the reduced frequency (but not amplitude) of miniature IPSCs (mIPSCs) as well as the reduced amplitude of IPSCs. This homeostatic regulation depended on endocannabinoid (eCB) signaling, because blockade of either the activation of cannabinoid type-1 receptors (CB1Rs) or the synthesis of its endogenous ligand 2-arachidonoylglycerol (2-AG) abolished the suppression of inhibitory synapses caused by the absence of mEPSCs. Blockade of group I metabotropic glutamate receptors (mGluR-I) also abolished the suppression of inhibitory synapses, consistent with the mGluR-I requirement for eCB synthesis and release in cortical synapses. Furthermore, this homeostatic regulation also required eukaryotic elongation factor-2 (eEF2)-dependent protein synthesis, but not gene transcription. Activation of eEF2 alone was sufficient to suppress the mIPSC frequency, an effect abolished by inhibiting CB1Rs. Thus, mEPSCs contribute to the maintenance of inhibitory synaptic function and the absence of mEPSCs results in presynaptic suppression of inhibitory synapses via protein synthesis-dependent elevation of eCB signaling.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Homeostasis/fisiología , Potenciales Postsinápticos Miniatura/fisiología , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Ácidos Araquidónicos/farmacología , Corteza Auditiva/citología , Bicuculina/farmacología , Biofisica/métodos , Moduladores de Receptores de Cannabinoides/agonistas , Moduladores de Receptores de Cannabinoides/antagonistas & inhibidores , Moduladores de Receptores de Cannabinoides/farmacología , Diazepam/farmacología , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Moduladores del GABA/farmacología , Glicéridos/farmacología , Homeostasis/efectos de los fármacos , Técnicas In Vitro , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...