Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891498

RESUMEN

This study continues the discussion on the surface modification of polymers using an atmospheric pressure plasma (APP) reactor in air. These results complement prior research focusing on nonpolar polymers. Polymers, such as polyethylene terephthalate, polyetheretherketone, and polymethyl methacrylate, containing structurally bonded oxygen are studied, representing a range of properties such as oxygen content, crystalline/amorphous structure, polarity, functionality, and aliphatic/aromatic structure. APP induces superior wetting properties on the hydrophilic polymer surfaces with rapid and uniform modification within 0.5 s of exposure. The amorphous structures undergo additional modification for longer exposure. Moreover, the aliphatic chain structures require longer plasma exposure to reach surface modification equilibrium. The polar polymers reach a limit level of modification corresponding to a minimum water contact angle of about 50°. The surface polarity increases on average by a factor of approximately two. The equilibrium values of the adhesion work attained after post-processing recovery fall within a limited range of about 100-120 mJ/m2. The enhancement of surface functionality through the creation of oxidized groups primarily depends on the initial oxygen content and reaches a limit of about 40 at.% oxygen. The surface properties of the treated polar surfaces exhibit good stability, comparable to that of the previously tested nonpolar polymers.

2.
Materials (Basel) ; 17(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673204

RESUMEN

Polymers are essential in several sectors, yet some applications necessitate surface modification. One practical and eco-friendly option is non-thermal plasma exposure. The present research endeavors to examine the impacts of dielectric barrier discharge atmospheric pressure plasma on the chemical composition and wettability properties of acrylonitrile butadiene styrene surfaces subject to the action of additive manufacturing. The plasma source was produced by igniting either helium or argon and then adjusted to maximize the operational conditions for exposing polymers. The drop in contact angle and the improvement in wettability after plasma exposure can be due to the increased oxygen-containing groups onto the surface, together with a reduction in carbon content. The research findings indicated that plasma treatment significantly improved the wettability of the polymer surface, with an increase of up to 60% for both working gases, while the polar index increased from 0.01 up to 0.99 after plasma treatment. XPS measurements showed an increase of up to 10% in oxygen groups at the surface of He-plasma-treated samples and up to 13% after Ar-plasma treatment. Significant modifications were observed in the structure that led to a reduction of its roughness by 50% and also caused a leveling effect after plasma treatment. A slight decrease in the glass and melting temperature after plasma treatment was pointed out by differential scanning calorimetry and broadband dielectric spectroscopy. Up to a 15% crystallinity index was determined after plasma treatment, and the 3D printing process was measured through X-ray diffraction. The empirical findings encourage the implementation of atmospheric pressure plasma-based techniques for the environmentally sustainable manipulation of polymers for applications necessitating higher levels of adhesion and specific prerequisites.

3.
Polymers (Basel) ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299241

RESUMEN

Atmospheric-pressure plasma (APP) has advantages for enhancing the adhesion of polymers and has to provide uniform, efficient treatment, which also limits the recovery effect of treated surfaces. This study investigates the effects of APP treatment on polymers that have no oxygen bonded in their structure and varying crystallinity, aiming to assess the maximum level of modification and the post-treatment stability of non-polar polymers based on their initial structure parameters, including the crystalline-amorphous structure. An APP reactor simulating continuous processing operating in air is employed, and the polymers are analyzed using contact angle measurement, XPS, AFM, and XRD. APP treatment significantly enhances the hydrophilic character of the polymers, with semicrystalline polymers exhibiting adhesion work values of approximately 105 mJ/m2 and 110 mJ/m2 for 0.5 s and 1.0 s exposure, respectively, while amorphous polymers reach approximately 128 mJ/m2. The maximum average oxygen uptake is around 30%. Short treatment times induce the roughening of the semicrystalline polymer surfaces, while the amorphous polymer surfaces become smoother. The polymers exhibit a limit to their modification level, with 0.5 s exposure being optimal for significant surface property changes. The treated surfaces remain remarkably stable, with the contact angle only reverting by a few degrees toward that of the untreated state.

4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499549

RESUMEN

High-performance supramolecular polyimide systems were synthesized via a simple and innovative approach using two types of azo-chromophores, leading to concomitant special properties: high thermostability, the ability to be processed in the form of films with high flexibility, adequate morphological features, and good structuring capacity via phase mask ultraviolet (UV) laser irradiation, induced by the presence of the azo groups (-N=N-). The dimension and the anisotropy degree of the micro/nano patterns obtained on the surface of the flexible films (determined by atomic force microscopy) depend on the azo-dye type used in the supramolecular azopolyimide synthesis, which were higher when the azo-chromophore containing a -cyano group (-C≡N) was used. The molecular dynamics method, an excellent tool for an in-depth examination of the intermolecular interactions, was used to explain the morphological aspects. Energetic, dynamic and structural parameters were calculated for the two systems containing azo-chromophores, as well as for the pristine polymer system. It was highlighted that the van der Waals forces make a major contribution to the intermolecular interactions. The results from the combination of the dynamic analysis and the concentration profile explain the better mobility of the polyimide chains with a maximum content of azo groups in the cis configuration compared to the other systems. Taking all these data into account, the surfaces of the films can be tuned as required for the proposed applications, namely as substrates for flexible electronis.


Asunto(s)
Compuestos Azo , Luz , Compuestos Azo/química , Microscopía de Fuerza Atómica , Rayos Ultravioleta , Polímeros/química
5.
Plants (Basel) ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015483

RESUMEN

Non-thermal plasma (NTP) is a novel and promising technique in the agricultural field that has the potential to improve vegetal material by modulating the expression of various genes involved in seed germination, plant immune response to abiotic stress, resistance to pathogens, and growth. Seeds are most frequently treated, in order to improve their ability to growth and evolve, but the whole plant can also be treated for a fast adaptive response to stress factors (heat, cold, pathogens). This review focuses mainly on the application of NTP on seeds. Non-thermal plasma treated seeds present both external and internal changes. The external ones include the alterations of seed coat to improve hydrophilicity and the internal ones refer to interfere with cellular processes that are later visible in metabolic and plant biology modifications. The usage of plasma aims to decrease the usage of fertilizers and pesticides in order to reduce the negative impact on natural ecosystem and to reduce the costs of production.

6.
Curr Issues Mol Biol ; 44(5): 1995-2014, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35678664

RESUMEN

The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.

7.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809999

RESUMEN

Aromatic polyimides containing side azo-naphthalene groups have been investigated regarding their capacity of generating surface relief gratings (SRGs) under pulsed UV laser irradiation through phase masks, using different fluencies and pulse numbers. The process of the material photo-fluidization and the supramolecular re-organization of the surface were investigated using atomic force microscopy (AFM). At first, an AFM nanoscale topographical analysis of the induced SRGs was performed in terms of morphology and tridimensional amplitude, spatial, hybrid, and functional parameters. Afterward, a nanomechanical characterization of SRGs using an advanced method, namely, AFM PinPoint mode, was performed, where the quantitative nanomechanical properties (i.e., modulus, adhesion, deformation) of the nanostructured azo-polyimide surfaces were acquired with a highly correlated topographic registration. This method proved to be very effective in understanding the formation mechanism of the surface modulations during pulsed UV laser irradiation. Additionally to AFM investigations, confocal Raman measurements and molecular simulations were performed to provide information about structured azo-polyimide chemical composition and macromolecular conformation induced by laser irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...