Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 643: 267-275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37068360

RESUMEN

HYPOTHESIS: Aqueous foams are expected to constitute exquisite particularly suitable reactive medium for the oxidation of metals, since the reactant H+ can be supplied through the continuous liquid phase, while the reactant O2 can be transported through the gas bubbles. EXPERIMENTS: To test this hypothesis, we investigated the oxidation of a metallic copper cylinder immersed in an aqueous foam. To study the relation between the transport of these reactants and the kinetics of the chemical reaction we use a forced drainage setup which enables us to control both the advection velocity of the H+ ions through the foam and the foam liquid fraction. FINDINGS: We find experimentally that the mass of dissolved copper presents a maximum with the drainage flow rate, and thus with the foam liquid fraction. Modeling analytically the transfer of H+ and O2 through the foams enables us to show that this non-monotonic behavior results from a competition between the advective flux of H+ ions and the unsteady diffusion of O2 through the thin liquid films which tends to be slower as the area of the thin liquid films decreases with the drainage flow rate and the liquid fraction. This study shows for the first time how to optimize the foam structure and drainage flow in reactive foams in which the reactants are present both in the liquid and gaseous phases.

2.
Langmuir ; 38(35): 10768-10780, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35998760

RESUMEN

Foams can resist destabilizaton in ways that appear similar on a macroscopic scale, but the microscopic origins of the stability and the loss thereof can be quite diverse. Here, we compare both the macroscopic drainage and ultimate collapse of aqueous foams stabilized by either a partially hydrolyzed poly(vinyl alcohol) (PVA) or a nonionic low-molecular-weight surfactant (BrijO10) with the dynamics of individual thin films at the microscale. From this comparison, we gain significant insight regarding the effect of both surface stresses and intermolecular forces on macroscopic foam stability. Distinct regimes in the lifetime of the foams were observed. Drainage at early stages is controlled by the different stress-boundary conditions at the surfaces of the bubbles between the polymer and the surfactant. The stress-carrying capacity of PVA-stabilized interfaces is a result of the mutual contribution of Marangoni stresses and surface shear viscosity. In contrast, surface shear inviscidity and much weaker Marangoni stresses were observed for the nonionic surfactant surfaces, resulting in faster drainage times, both at the level of the single film and the macroscopic foam. At longer times, the PVA foams present a regime of homogeneous coalescence where isolated coalescence events are observed. This regime, which is observed only for PVA foams, occurs when the capillary pressure reaches the maximum disjoining pressure. A final regime is then observed for both systems where a fast coalescence front propagates from the top to the bottom of the foams. The critical liquid fractions and capillary pressures at which this regime is obtained are similar for both PVA and BrijO10 foams, which most likely indicates that collapse is related to a universal mechanism that seems unrelated to the stabilizer interfacial dynamics.

3.
Phys Rev E ; 104(5-2): 055004, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942711

RESUMEN

In disordered materials under mechanical stress, the induced deformation can deviate from the affine one, even in the elastic regime. The nonaffine contribution was observed and characterized in numerical simulations for various systems and reported experimentally in colloidal gels. However, low amplitude of nonaffinity and its local character makes the experimental study challenging. We present a method based on the phase compensation of the wave scattered from a thermally dilated amorphous material using fine wavelength tuning of the optical probe beam. Using a glass frit as a sample, we ensure complete reversibility of the material deformation, while experimental observations enable us to confirm the occurrence of nonaffinity in the elastic regime. We develop a model for the coupled effect of the thermal expansion or contraction of the material and the dilatation of the incident wavelength, which allows us to estimate the magnitude of the nonaffine displacement and the spatial extent of its correlation domain.

4.
Soft Matter ; 16(9): 2249-2255, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32026912

RESUMEN

We explore the evolution of the mechanical properties of a coarsening foam containing colloidal particles that undergo a sol-gel transition in the continuous phase. This enables us to investigate the impact of elasto-capillarity on foam mechanics over a wide range of elasto-capillary numbers. Right after initiating aggregation the foam mechanics is predominantly determined by the elasticity of the bubbles, while the contributions of the continuous phase become dominant as the colloidal particles form a gel. Taking into account the confined configuration of the foam skeleton for the formation of a space spanning gel, we find that for elasto-capillary numbers exceeding unity the foam mechanics can be described as a simple linear combination of the contributions due to respectively the bubble elasticity and the elastic skeleton. Surprisingly, the contributions of the elastic skeleton to the overall foam mechanics are larger for smaller elasto-capillary numbers, scaling as the inverse of the capillary number.

5.
Soft Matter ; 13(39): 7197-7206, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28930353

RESUMEN

The self-aggregation, surface properties and foamability of the catanionic surfactant mixture cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate (SOSo) have been investigated to obtain insight on the relation between bulk nanostructures, surfactant packing, and foam stability and aging. Light microscopy, SANS, cryo-TEM, DLS, surface tension, rheometry and direct photography were used to characterize mixtures with varying CTAB molar fraction, xCTAB. In the bulk, self-assembly is richer in the excess CTAB region than in the excess SOSo one. Starting from neat CTAB micelles and on addition of anionic surfactant, there is a change from small ellipsoidal micelles (1 < xCTAB ≤ 0.80) to large rodlike micelles (0.65 ≤ xCTAB ≤ 0.55) and then to vesicles (0 < xCTAB ≤ 0.50), with coexistence regions in between; SOSo-rich mixtures are thus dominated by vesicles. High size polydispersity for the micelles and vesicles is an intrinsic feature of this system. Foam stability is concomitantly impacted by xCTAB. SOSo is a small mobile molecule and so it disrupts foam stability, irrespective of the presence of vesicles. Foams are thus only stable in the CTAB-rich regions, and SANS shows that the shape of micelles and vesicles is unchanged inside the foam. Foam drainage is thereby mostly controlled by the presence of the elongated micelles through the solution viscosity, whereas coarsening is influenced by dense surfactant packing at the gas-liquid interfaces.

6.
Adv Colloid Interface Sci ; 247: 444-453, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28764854

RESUMEN

Foams are multiscale materials that have an enormous number of uses. As the relevant structural length-scales span from a few nanometres up to millimetres a number of characterisation methods need to be combined to obtain the full material structure. In this review we explain how foams can be explored using Small Angle Neutron Scattering (SANS). We remind the reader of the basics of SANS and contrast variation before we describe the different types of experiments that have been carried out on foams emphasising the specific role of neutrons in learning about the systems. To date SANS has been used to measure different foam structural parameters, such as the film thickness and the bubble size. Several studies have also been carried out to elucidate the organisation of the stabilising objects in the bulk solution. Finally we show how SANS measurements can be used to measure foam composition. Some of the accessible information is unique to SANS experiments, but as the method is still not very widely used on foams the review is also aimed to act as an introduction on how to carry out such measurements on foams.

7.
Rev Sci Instrum ; 88(5): 051804, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571455

RESUMEN

This article is a tutorial on the practical implementation of a method of measurement of minute deformations based on multiple scattering. This technique has been recently developed and has proven to give new insights into the spatial repartition of strain in a granular material. We provide here the basics to understand the method by giving a synthetic review on diffusing wave spectroscopy and multiple scattering in granular materials. We detail a simple experiment using standard lab equipment to pedagogically demonstrate the implementation of the method. Finally we give a few examples of measurements that have been obtained in other works to discuss the potential of the method.

8.
J Colloid Interface Sci ; 463: 137-44, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26520820

RESUMEN

We show that, while the gelation of colloidal silica proceeds much faster in the presence of added KCl than NaCl, the final gels are very similar in structure and properties. We have studied the gelation process by visual inspection and by small angle X-ray scattering for a range of salt and silica particle concentrations. The characteristic times of the early aggregation process and the formation of a stress-bearing structure with both salts are shown to collapse onto master curves with single multiplicative constants, linked to the stability ratio of the colloidal suspensions. The influence of the salt type and concentration is confirmed to be mainly kinetic, as the static structure factors and viscoelastic moduli of the gels are shown to be equivalent at normalized times. While there is strong variation in the kinetics, the structure and properties of the gel at long-times are shown to be mainly controlled by the concentration of particles, and hardly influenced by the type or the concentration of salt. This suggests that the differences between gels generated by different salts are only transient in time.


Asunto(s)
Geles/química , Dióxido de Silicio/química , Coloides/química , Iones/química , Cinética , Estructura Molecular , Cloruro de Potasio/química , Cloruro de Sodio/química
9.
Angew Chem Int Ed Engl ; 54(33): 9533-6, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26120060

RESUMEN

Ultrastable foams are made very simply by adding salt (NaCl or KCl) to sodium dodecyl sulfate. The addition of high concentrations of salt leads to the precipitation of the surfactant on the bubble surfaces and as crystals in the interstices between the bubbles. As a consequence, the ageing of the foams is stopped to make them stable indefinitely, or until they are heated above the melting temperature of the crystals. The use of KCl is shown to be much more effective than that of NaCl because potassium dodecyl sulfate has a higher melting temperature and faster rates of crystallization. The crystalline structures have been investigated inside the foam using small angle neutron scattering. The larger lattice spacing of the crystals formed with NaCl in comparison with KCl has been evidenced. These simple temperature stimulable foams could have many potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA