Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; : e3653, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329311

RESUMEN

Self-assembling peptide hydrogels (SAPHs) have been used in the past decade as reliable three-dimensional (3D) synthetic scaffolds for the culture of a variety of mammalian cells in vitro. Thanks to their versatile physicochemical properties, they allow researchers to tailor the hydrogel properties, including stiffness and functionality to the targeted cells and cells' behaviour. One of the advantages of using SAPH scaffolds is the ease of functionalisation. In the present work, we discuss the effect that functionalising the FEFEFKFK (F, phenylalanine; K, lysine; and E, glutamic acid) hydrogel scaffold using the cell-binding RGDS (fibronectin - R, arginine; G, glycine; D, aspartic acid; S, serine) epitope affects the material properties as well as the function of encapsulated human osteoblast cells. RGDS functionalisation resulted in cells adopting an elongated morphology, suggesting attachment and increased proliferation. While this led to higher cell viability, it also resulted in a decrease in extra-cellular matrix (ECM) protein production as well as a decrease in calcium ion deposition, suggesting lower mineralisation capabilities. The work clearly shows that SAPHs are a flexible platform that allow the modification of scaffolds in a controlled manner to investigate cell-material interactions.

2.
Curr Protoc ; 4(7): e1096, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984433

RESUMEN

With recent advances in the reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs), gene editing technologies, and protocols for the directed differentiation of stem cells into heterogeneous tissues, iPSC-derived kidney organoids have emerged as a useful means to study processes of renal development and disease. Considerable advances guided by knowledge of fundamental renal developmental signaling pathways have been made with the use of exogenous morphogens to generate more robust kidney-like tissues in vitro. However, both biochemical and biophysical microenvironmental cues are major influences on tissue development and self-organization. In the context of engineering the biophysical aspects of the microenvironment, the use of hydrogel extracellular scaffolds for organoid studies has been gaining interest. Two families of hydrogels have recently been the subject of significant attention: self-assembling peptide hydrogels (SAPHs), which are fully synthetic and chemically defined, and gelatin methacryloyl (GelMA) hydrogels, which are semi-synthetic. Both can be used as support matrices for growing kidney organoids. Based on our recently published work, we highlight methods describing the generation of human iPSC (hiPSC)-derived kidney organoids and their maturation within SAPHs and GelMA hydrogels. We also detail protocols required for the characterization of such organoids using immunofluorescence imaging. Together, these protocols should enable the user to grow hiPSC-derived kidney organoids within hydrogels of this kind and evaluate the effects that the biophysical microenvironment provided by the hydrogels has on kidney organoid maturation. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Directed differentiation of human induced pluripotent stem cells (hiPSCs) into kidney organoids and maturation within mechanically tunable self-assembling peptide hydrogels (SAPHs) Alternate Protocol: Encapsulation of day 9 nephron progenitor aggregates in gelatin methacryloyl (GelMA) hydrogels. Support Protocol 1: Human induced pluripotent stem cell (hiPSC) culture. Support Protocol 2: Organoid fixation with paraformaldehyde (PFA) Basic Protocol 2: Whole-mount immunofluorescence imaging of kidney organoids. Basic Protocol 3: Immunofluorescence of organoid cryosections.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes Inducidas , Riñón , Organoides , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Hidrogeles/química , Humanos , Riñón/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular
3.
Biomacromolecules ; 25(6): 3628-3641, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38771115

RESUMEN

Peptide-based supramolecular hydrogels are an attractive class of soft materials for biomedical applications when biocompatibility is a key requirement as they exploit the physical self-assembly of short self-assembling peptides avoiding the need for chemical cross-linking. Based on the knowledge developed through our previous work, we designed two novel peptides, E(FKFE)2 and K(FEFK)2, that form transparent hydrogels at pH 7. We characterized the phase behavior of these peptides and showed the clear link that exists between the charge carried by the peptides and the physical state of the samples. We subsequently demonstrate the cytocompatibility of the hydrogel and its suitability for 3D cell culture using 3T3 fibroblasts and human mesenchymal stem cells. We then loaded the hydrogels with two polymers, poly-l-lysine and dextran. When polymer and peptide fibers carry opposite charges, the size of the elemental fibril formed decreases, while the overall level of fiber aggregation and fiber bundle formation increases. This overall network topology change, and increase in cross-link stability and density, leads to an overall increase in the hydrogel mechanical properties and stability, i.e., resistance to swelling when placed in excess media. Finally, we investigate the diffusion of the polymers out of the hydrogels and show how electrostatic interactions can be used to control the release of large molecules. The work clearly shows how polymers can be used to tailor the properties of peptide hydrogels through guided intermolecular interactions and demonstrates the potential of these new soft hydrogels for use in the biomedical field in particular for delivery or large molecular payloads and cells as well as scaffolds for 3D cell culture.


Asunto(s)
Hidrogeles , Péptidos , Electricidad Estática , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Ratones , Animales , Péptidos/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Polilisina/química , Materiales Biocompatibles/química , Dextranos/química , Células 3T3
4.
Biomater Adv ; 160: 213847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657288

RESUMEN

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Colágeno , Combinación de Medicamentos , Células Epiteliales , Hidrogeles , Laminina , Péptidos , Proteoglicanos , Laminina/farmacología , Laminina/química , Hidrogeles/química , Hidrogeles/farmacología , Proteoglicanos/farmacología , Proteoglicanos/química , Colágeno/química , Colágeno/farmacología , Péptidos/farmacología , Péptidos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/citología , Humanos , Femenino , Técnicas de Cultivo Tridimensional de Células/métodos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Glándulas Mamarias Humanas/citología , Organoides/efectos de los fármacos , Organoides/citología , Técnicas de Cultivo de Célula/métodos
5.
Expert Opin Drug Discov ; 18(3): 335-346, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36722285

RESUMEN

INTRODUCTION: Success in drug discovery remains unpredictable. However, more predictive and relevant disease models are becoming pivotal to demonstrating the clinical benefits of new drugs earlier in the lengthy drug discovery process. Novel hydrogel scaffolds are being developed to transform the relevance of such 3D cell-based in vitro assay systems. AREAS COVERED: Most traditional hydrogels are still of unknown composition and suffer significant batch-to-batch variations, which lead to technical constraints. This article looks at how a new generation of novel synthetic hydrogels that are based on self-assembling peptides are poised to transform 3D cell-based assay systems by improving their relevance, reproducibility and scalability. EXPERT OPINION: The emerging advantages of using these novel hydrogels for human 3D screening assays should enable the discovery of more cost-effective drugs, leading to improved patient benefits. Such a disruptive change could also reduce the considerable time lag from obtaining in vitro assay data to initiating clinical trials. There is now a sufficient body of data available in the literature to enable this ambition to become a reality by significantly improving the predictive validity of 3D cell-based assays in early drug discovery. Novel hydrogels are key to unlocking the full potential of these assay systems.


Asunto(s)
Descubrimiento de Drogas , Hidrogeles , Humanos , Hidrogeles/química , Reproducibilidad de los Resultados , Péptidos/química
6.
Bioact Mater ; 21: 142-156, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36093324

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine. However, there remains a necessity to refine the biophysical and biochemical parameters that govern kidney organoid formation. Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation. Here, we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels (SAPHs) of variable stiffness (storage modulus, G'). The resulting organoids contained complex structures comparable to those differentiated within the animal-derived matrix, Matrigel. Single-cell RNA sequencing (scRNA-seq) was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface. A total of 13,179 cells were analysed, revealing 14 distinct clusters. Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids, while SAPH-derived organoids were enriched for stromal-associated cell populations. Notably, differentiation within a higher G' SAPH generated podocytes with more mature gene expression profiles. Additionally, maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types, which are a known limitation of current kidney organoid protocols. This work demonstrates the utility of synthetic peptide-based hydrogels with a defined stiffness, as a minimally complex microenvironment for the selected differentiation of kidney organoids.

7.
Biomacromolecules ; 23(6): 2624-2634, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35543610

RESUMEN

Hydrogels are versatile materials that have emerged in the last few decades as promising candidates for a range of applications in the biomedical field, from tissue engineering and regenerative medicine to controlled drug delivery. In the drug delivery field, in particular, they have been the subject of significant interest for the spatially and temporally controlled delivery of anticancer drugs and therapeutics. Self-assembling peptide-based hydrogels, in particular, have recently come to the fore as potential candidate vehicles for the delivery of a range of drugs. In order to explore how drug-peptide interactions influence doxorubicin (Dox) release, five ß-sheet-forming self-assembling peptides with different physicochemical properties were used for the purpose of this study, namely: FEFKFEFK (F8), FKFEFKFK (FK), FEFEFKFE (FE), FEFKFEFKK (F8K), and KFEFKFEFKK (KF8K) (F: phenylalanine; E: glutamic acid; K: lysine). First, Dox-loaded hydrogels were characterized to ensure that the incorporation of the drug did not significantly affect the hydrogel properties. Subsequently, Dox diffusion out of the hydrogels was investigated using UV absorbance. The amount of drug retained in F8/FE composite hydrogels was found to be directly proportional to the amount of charge carried by the peptide fibers. When cation-π interactions were used, the position and number of end-lysine were found to play a key role in the retention of Dox. In this case, the amount of Dox retained in F8/KF8K composite hydrogels was linked to the amount of end-lysine introduced, and an end-lysine/Dox interaction stoichiometry of 3/1 was obtained. For pure FE and KF8K hydrogels, the maximum amount of Dox retained was also found to be related to the overall concentration of the hydrogels and, therefore, to the overall fiber surface area available for interaction with the drug. For 14 mM hydrogel, ∼170-200 µM Dox could be retained after 24 h. This set of peptides also showed a broad range of susceptibilities to enzymatic degradation opening the prospect of being able to control also the rate of degradation of these hydrogels. Finally, the Dox released from the hydrogel was shown to be active and affect 3T3 mouse fibroblasts viability in vitro. Our study clearly shows the potential of this peptide design as a platform for the formulation of injectable or sprayable hydrogels for controlled drug delivery.


Asunto(s)
Hidrogeles , Lisina , Animales , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Ratones , Péptidos/química
8.
ACS Nano ; 16(3): 4322-4337, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35255206

RESUMEN

Liver fibrosis, a condition characterized by extensive deposition and cross-linking of extracellular matrix (ECM) proteins, is idiosyncratic in cases of chronic liver injury. The dysregulation of ECM remodeling by hepatic stellate cells (HSCs), the main mediators of fibrosis, results in an elevated ECM stiffness that drives the development of chronic liver disease such as cirrhosis and hepatocellular carcinoma. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a key element in the regulation of ECM remodeling, which modulates the degradation and turnover of ECM components. We have previously reported that a rigid, fibrotic-like substrate can impact TIMP-1 expression at the protein level in HSCs without altering its mRNA expression. While HSCs are known to be highly susceptible to mechanical stimuli, the mechanisms through which mechanical cues regulate TIMP-1 at the post-translational level remain unclear. Here, we show a mechanism of regulation of plasma membrane tension by matrix stiffness. We found that this effect is orchestrated by the ß1 integrin/RhoA axis and results in elevated exocytosis and secretion of TIMP-1 in a caveolin-1- and dynamin-2-dependent manner. We then show that TIMP-1 and caveolin-1 expression increases in cirrhosis and hepatocellular carcinoma. These conditions are associated with fibrosis, and this effect can be recapitulated in 3D fibrosis models consisting of hepatic stellate cells encapsulated in a self-assembling polypeptide hydrogel. This work positions stiffness-dependent membrane tension as a key regulator of enzyme secretion and function and a potential target for therapeutic strategies that aim at modulating ECM remodeling in chronic liver disease.


Asunto(s)
Carcinoma Hepatocelular , Caveolina 1 , Neoplasias Hepáticas , Inhibidor Tisular de Metaloproteinasa-1 , Carcinoma Hepatocelular/patología , Caveolina 1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
9.
Mater Sci Eng C Mater Biol Appl ; 127: 112200, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34225853

RESUMEN

Self-assembling peptide hydrogels (SAPH) are a popular biomaterial due to their biocompatibility with a wide range of cell types, synthetic design, structural properties that provide a more accurate 3D microenvironment, and potential for cell- and/or drug-delivery system. Mimicking solid tumors in vitro using hydrogels is one method of testing anti-cancer drug efficacy and observing cancerous cell-ECM interactions within a 3D system. In this study, a SAPH, PeptiGel®Alpha1, was used to model in vitro the 3D breast tumor microenvironment. PeptiGel®Alpha1 is composed of entangled nanofibers with consistent diameter and mechanical properties similar to breast cancer that more accurately mimic the stiffness of breast tumor tissue than Matrigel® or collagen type I. PeptiGel®Alpha1 supported the viability and growth of the breast cancer cell lines MCF-7 and MDA-MB-231 and recapitulated key features of solid tumors such as hypoxia and invasion. MCF-7 cells in the hydrogels formed large spheroids resembling acini, while MDA-MB-231 remained dispersed. When treated with tamoxifen, PeptiGel®Alpha1 acted as a barrier, providing drug penetration geometry similar to that in vivo, providing better prediction of the drug effect. Finally, it was observed that MCF-7 cells engulfed the peptide matrix after 14 days, highlighting a potential use in drug delivery. PeptiGel®Alpha1 is a suitable platform for in vitro modeling of breast cancer.


Asunto(s)
Neoplasias de la Mama , Hidrogeles , Neoplasias de la Mama/patología , Línea Celular Tumoral , Colágeno Tipo I , Progresión de la Enfermedad , Femenino , Humanos , Células MCF-7 , Péptidos , Microambiente Tumoral
10.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209094

RESUMEN

The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).

11.
Acta Biomater ; 127: 116-130, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831573

RESUMEN

Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. Early treatment of IVD degeneration is critical to the reduction of low back pain and related disability. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. Recently, we developed an injectable graphene oxide (GO) - self-assembling peptide FEFKFEFK (F: phenylalanine; K: lysine; E: glutamic acid) hybrid hydrogels as potential delivery platform for cells and/or drugs in the NP. In this current study, we explored the possibility of using the GO present in these hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-ß3), an anabolic growth factor (GF) known to direct NP cell fate and function. For this purpose, we first investigated the potential of GO to bind and sequestrate TGF-ß3. We then cultured bovine NP cells in the new functional scaffolds and investigated their response to the presence of GO and TGF-ß3. Our results clearly showed that GO flakes can sequestrate TGF-ß3 through strong binding interactions resulting in a slow and prolonged release, with the GF remaining active even when bound to the GO flakes. The adsorption of the GF on the GO flakes to create TGF-ß3-loaded GO flakes and their subsequent incorporation in the hydrogels through mixing, [(GO/TGF-ß3Ads)-F8] hydrogel, led to the upregulation of NP-specific genes, accompanied by the production and deposition of an NP-like ECM, rich in aggrecan and collagen II. NP cells actively interacted with TGF-ß3-loaded GO flakes and remodeled the scaffolds through endocytosis. This work highlights the potential of using GO as a nanocarrier for the design of functional hybrid peptide-based hydrogels. STATEMENT OF SIGNIFICANCE: Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. In this current study, we explored the possibility of using peptide - GO hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-ß3), an anabolic growth factor (GF) known to direct NP cell fate and function.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Bovinos , Matriz Extracelular , Grafito , Hidrogeles/farmacología , Degeneración del Disco Intervertebral/terapia , Péptidos/farmacología , Regeneración , Factor de Crecimiento Transformador beta3
12.
Biomacromolecules ; 21(6): 2285-2297, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275138

RESUMEN

Hydrogels' hydrated fibrillar nature makes them the material of choice for the design and engineering of 3D scaffolds for cell culture, tissue engineering, and drug-delivery applications. One particular class of hydrogels which has been the focus of significant research is self-assembling peptide hydrogels. In the present work, we were interested in exploring how fiber-fiber edge interactions affect the self-assembly and gelation properties of amphipathic peptides. For this purpose, we investigated two ß-sheet-forming peptides, FEFKFEFK (F8) and KFEFKFEFKK (KF8K), the latter one having the fiber edges covered by lysine residues. Our results showed that the addition of the two lysine residues did not affect the ability of the peptides to form ß-sheet-rich fibers, provided that the overall charge carried by the two peptides was kept constant. However, it did significantly reduce edge-driven hydrophobic fiber-fiber associative interactions, resulting in reduced tendency for KF8K fibers to associate/aggregate laterally and form large fiber bundles and consequently network cross-links. This effect resulted in the formation of hydrogels with lower moduli but faster dynamics. As a result, KF8K fibers could be aligned only under high shear and at high concentration while F8 hydrogel fibers were found to align readily at low shear and low concentration. In addition, F8 hydrogels were found to fragment at high concentration because of the high aggregation state stabilizing the fiber bundles, resulting in fiber breakage rather than disentanglement and alignment.


Asunto(s)
Hidrogeles , Péptidos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica en Lámina beta , Ingeniería de Tejidos
13.
Anal Chem ; 91(15): 10016-10025, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246004

RESUMEN

DNA and RNA biomarkers have not progressed beyond the automated specialized clinic due to failure in the reproducibility necessary to standardize robust and rapid nucleic acid detection at the point of care, where health outcomes can be most improved by early-stage diagnosis and precise monitoring of therapy and disease prognosis. We demonstrate here a new analytical platform to meet this challenge using functional 3D hydrogels engineered from peptide and oligonucleotide building blocks to provide sequence-specific, PCR-free fluorescent detection of unlabeled nucleic acid sequences. We discriminated at picomolar detection limits (<7 pM) "perfect-match" from mismatched sequences, down to a single nucleotide mutation, buried within longer lengths of the target. Detailed characterization by NMR, TEM, mass spectrometry, and rheology provided the structural understanding to design these hybrid peptide-oligonucleotide biomaterials with the desired sequence sensitivity and detection limit. We discuss the generic design, which is based on a highly predictable secondary structure of the oligonucleotide components, as a platform to detect genetic abnormalities and to screen for pathogenic conditions at the level of both DNA (e.g., SNPs) and RNA (messenger, micro, and viral genomic RNA).


Asunto(s)
Hidrogeles/química , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa/métodos , Disparidad de Par Base , Secuencia de Bases , Límite de Detección , Hibridación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo
14.
Acta Biomater ; 92: 92-103, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091473

RESUMEN

Cell-based therapies have shown significant promise in tissue engineering with one key challenge being the delivery and retention of cells. As a result, significant efforts have been made in the past decade to design injectable biomaterials to host and deliver cells at injury sites. Intervertebral disc (IVD) degeneration, a major cause of back pain, is a particularly relevant example where a minimally-invasive cellular therapy could bring significant benefits specifically at the early stages of the disease, when a cell-driven process starts in the gelatinous core of the IVD, the nucleus pulposus (NP). In this present study we explore the use of graphene oxide (GO) as nano-filler for the reinforcement of FEFKFEFK (ß-sheet forming self-assembling peptide) hydrogels. Our results confirm the presence of strong interactions between FEFKFEFK and GO flakes with the peptide coating and forming short thin fibrils on the surface of the flakes. These strong interactions were found to affect the bulk properties of hybrid hydrogels. At pH 4 electrostatic interactions between the peptide fibres and the peptide-coated GO flakes are thought to govern the final bulk properties of the hydrogels while at pH 7, after conditioning with cell culture media, electrostatic interactions are removed leaving the hydrophobic interactions to govern hydrogel final properties. The GO-F820 hybrid hydrogel, with mechanical properties similar to the NP, was shown to promote high cell viability and retained cell metabolic activity in 3D over the 7 days of culture and therefore shown to harbour significant potential as an injectable hydrogel scaffold for the in-vivo delivery of NP cells. STATEMENT OF SIGNIFICANCE: Short self-assembling peptide hydrogels (SAPHs) have attracted significant interest in recent years as they can mimic the natural extra-cellular matrix, holding significant promise for the ab initio design of cells' microenvironments. Recently the design of hybrid hydrogels for biomedical applications has been explored through the incorporation of specific nanofillers. In this study we exploited graphene oxide (GO) as nanofiller to design hybrid injectable 3Dscaffolds for the delivery of nucleus pulposus cells (NPCs) for intervertebral disc regeneration. Our work clearly shows the presence of strong interactions between peptide and GO, mimicking the mechanical properties of the NP tissue and promoting high cell viability and metabolic activity. These hybrid hydrogels therefore harbour significant potential as injectable scaffolds for the in vivo delivery of NPCs.


Asunto(s)
Grafito/química , Hidrogeles/química , Inyecciones , Disco Intervertebral/fisiología , Péptidos/química , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Secuencia de Aminoácidos , Animales , Bovinos , Supervivencia Celular
15.
PLoS One ; 13(6): e0197517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29864116

RESUMEN

Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four ß-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution-pronase-was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed.


Asunto(s)
Hidrogeles/química , Péptidos/química , ARN/aislamiento & purificación , Ingeniería de Tejidos , Materiales Biocompatibles/química , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Humanos , Hidrogeles/farmacología , Nanofibras/química , Conformación Proteica en Lámina beta , ARN/química
16.
Biomacromolecules ; 19(7): 2731-2741, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29672029

RESUMEN

A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofillers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling ß-sheet-forming, self-assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and π-π in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications.


Asunto(s)
Grafito/química , Hidrogeles/síntesis química , Péptidos/química , Línea Celular , Humanos , Hidrogeles/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Electricidad Estática
17.
Biotechniques ; 63(6): 253-260, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29235971

RESUMEN

Continuous optimization of in vitro analytical techniques is ever more important, especially given the development of new materials for tissue engineering studies. In particular, isolation of cellular components for downstream applications is often hindered by the presence of biomaterials, presenting a major obstacle in understanding how cell-matrix interactions influence cell behavior. Here, we describe an approach for western blot analysis of cells that have been encapsulated in self-assembling peptide hydrogels (SAPHs), which highlights the need for complete solubilization of the hydrogel construct. We demonstrate that both the choice of buffer and multiple cycles of sonication are vital in obtaining complete solubilization, thereby enabling the detection of proteins otherwise lost to SAP aggregation. Moreover, we show that the presence of self-assembling peptides (SAPs) does not interfere with the standard immunoblotting technique, offering the potential for use in more full-scale proteomic studies.


Asunto(s)
Western Blotting/métodos , Técnicas Citológicas/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Péptidos/química , Biotecnología , Células HEK293 , Humanos , Péptidos/metabolismo , Dodecil Sulfato de Sodio/química , Tiourea/química
18.
Biomacromolecules ; 18(3): 826-834, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28068466

RESUMEN

Self-assembling peptide-based hydrogels have encountered increasing interest in the recent years as scaffolds for 3D cell culture or for controlled drug delivery. One of the main challenges is the fine control of the mechanical properties of these materials. The bulk properties of hydrogels not only depend on the intrinsic properties of the fibers but also on the network topology formed. In this work we show how fiber-fiber interactions can be manipulated by design to control the final hydrogel network topology and therefore control the final properties of the material. This was achieved by exploiting the design features of ß-sheet forming peptides based on hydrophobic and hydrophilic residue alternation and exploiting the ability of the arginine's guanidine side group to interact with itself and with other amino acid side groups. By designing octa-peptides based on phenylalanine, glutamic acid, lysine, and arginine, we have investigated how fiber association and bundling affect the dynamic shear modulus of hydrogels and how it can be controlled by design. This work opens the possibility to fine-tune by design the bulk properties of peptide hydrogels.


Asunto(s)
Hidrogeles/química , Péptidos/química , Arginina/análisis , Ácido Glutámico/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/análisis , Fenómenos Mecánicos , Microscopía Electrónica de Transmisión , Modelos Teóricos , Fenilalanina/análisis , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido/química
19.
J Tissue Eng ; 7: 2041731416649789, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27493714

RESUMEN

An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively) hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1), osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone.

20.
Langmuir ; 32(19): 4917-23, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27089379

RESUMEN

ß-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended ß-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity).


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Secuencia de Aminoácidos , Geles , Modelos Moleculares , Conformación Proteica en Lámina beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA