Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JACC Basic Transl Sci ; 4(3): 385-400, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31312761

RESUMEN

Alterations in cardiac energy metabolism after a myocardial infarction contribute to the severity of heart failure (HF). Although fatty acid oxidation can be impaired in HF, it is unclear if stimulating fatty acid oxidation is a desirable approach to treat HF. Both immediate and chronic malonyl coenzyme A decarboxylase inhibition, which decreases fatty acid oxidation, improved cardiac function through enhancing cardiac efficiency in a post-myocardial infarction rat that underwent permanent left anterior descending coronary artery ligation. The beneficial effects of MCD inhibition were attributed to a decrease in proton production due to an improved coupling between glycolysis and glucose oxidation.

2.
Curr Pharm Des ; 21(25): 3654-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26166604

RESUMEN

Despite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/metabolismo , Antagonistas Adrenérgicos beta/uso terapéutico , Carnitina/uso terapéutico , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/agonistas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA