Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
1.
Gene ; 931: 148892, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187138

RESUMEN

Sepsis-related brain injury (SRBI) refers to brain dysfunction and structural damage caused by sepsis, which is characterized by inflammation, oxidative stress, and destruction of the blood-brain barrier. Pioglitazone is a PPAR-γ agonist in which PPAR-γ acts as an inflammatory modulator, determining the relationship between PPAR-γ and SRBI and inflammatory state is critical for the disease. This study aimed to construct a drug-target-disease network for SRBI and Pioglitazone based on network pharmacology, and to investigate the therapeutic effect and potential mechanism of Pioglitazone in SRBI induced by lipopolysaccharide (LPS) in rats through transcriptomics. To establish a rat Model of SRBI by intraperitoneal injection of LPS (10 mg/kg): SD rats were divided into Control, Model (LPS), Pioglitazone, (LPS + Pioglitazone) and GW9662 group (LPS+GW9662). The effects and potential mechanisms of Pioglitazone in the treatment of SRBI were studied using biochemical indexes, pathological changes and transcriptome-sequencing (RNA-seq). RNA-seq results showed 620 DEGs between the Model and the Pioglitazone groups. Enrichment analysis involved multiple inflammatory response processes and chemokine receptor binding functions. TLR4 and CXCL10 in the Toll signaling pathway may play an important role in SRBI as important targets. Pioglitazone may ameliorate SRBI through the PPAR-γ/TLR4/CXCL10 pathway.

2.
Nanomicro Lett ; 16(1): 264, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120835

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.

3.
Imeta ; 3(4): e225, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135684

RESUMEN

Over the years, microbiome research has achieved tremendous advancements driven by culture-independent meta-omics approaches. Despite extensive research, our understanding of the functional roles and causal effects of the microbiome on phenotypes remains limited. In this study, we focused on the rumen metaproteome, combining it with metatranscriptome and metabolome data to accurately identify the active functional distributions of rumen microorganisms and specific functional groups that influence feed efficiency. By integrating host genetics data, we established the potentially causal relationships between microbes-proteins/metabolites-phenotype, and identified specific patterns in which functional groups of rumen microorganisms influence host feed efficiency. We found a causal link between Selenomonas bovis and rumen carbohydrate metabolism, potentially mediated by bacterial chemotaxis and a two-component regulatory system, impacting feed utilization efficiency of dairy cows. Our study on the nutrient utilization functional groups in the rumen of high-feed-efficiency dairy cows, along with the identification of key microbiota functional proteins and their potentially causal relationships, will help move from correlation to causation in rumen microbiome research. This will ultimately enable precise regulation of the rumen microbiota for optimized ruminant production.

4.
Biotechnol J ; 19(8): e2400347, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167556

RESUMEN

Plant-derived ß-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed ß-glucosidase (ASG II) in Komagataella phaffii and enhanced its production from 289 to 4322 U L-1 through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG IIV80A achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L-1 and 41.4 kU L-1, respectively. The preparative biosynthesis of salidroside by ASG IIV80A exhibited a high space-time yield of 33.1 g L-1 d-1, which is so far the highest level by plant-derived ß-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived ß-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.


Asunto(s)
Glucósidos , Malus , Fenoles , Semillas , beta-Glucosidasa , Fenoles/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Glucósidos/biosíntesis , Glucósidos/metabolismo , Glucósidos/química , Semillas/genética , Semillas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimología , Fermentación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ingeniería de Proteínas/métodos
5.
ACS Appl Mater Interfaces ; 16(33): 43548-43555, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105758

RESUMEN

Substituting electrochemically active elements such as Li and Mg in P2-type layered sodium oxide is an effective strategy for developing competitive cathode materials for sodium-ion batteries. However, the lack of atomic-level understanding regarding the distribution of substitution positions complicates the comprehension of the roles of substituting atoms and the mechanism of sodium-ion intercalation. In this study, we identified the stable configurations of Na in Na0.75Ni0.3Mn0.7O2 and Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 materials using the site exclusion method. Through simulating the complete charging process for both materials, the structure evolution of the cathodes during the cycling and the impact of the partial substitution of Ni elements by Li and Mg atoms were comprehensively elucidated. Our findings revealed that Mg atoms effectively regulate the distribution of forces within the materials, essentially serving as supportive pillars within the cathode. Meanwhile, Li atoms efficiently mitigated electron localization, consequently diminishing volume fluctuations during the charging process. More importantly, the substitution with Li and Mg atoms could synergistically reduce the interaction between transition metals and sodium ions, thereby reducing the diffusion energy barrier of Na ions. This study not only enhances the comprehension of substituted metal atoms in P2 layered oxides but also offers new insights for the development of sodium-ion cathode materials.

6.
J Med Chem ; 67(16): 13666-13680, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39114932

RESUMEN

Proteolysis-targeting chimeras (PROTACs) selectively eliminate detrimental proteins by exploiting the ubiquitin-proteasome system (UPS), representing a promising therapeutic strategy against various diseases. Effective adaptations of degradation signal sequences and E3 ligases for PROTACs remain limited. Here, we employed three amino acids─Gly, Pro, and Lys─as the ligand to recruit the corresponding E3 ligases: CRL2ZYG11B/ZER1, GID4, and UBRs, to degrade EML4-ALK and mutant EGFR, two oncogenic drivers in NSCLC. We found that the extent of EML4-ALK and EGFR reduction can be easily fine-tuned by using different degradation signals. These amino acid-based PROTACs, termed AATacs, hindered proliferation and induced cell cycle arrest and apoptosis of NSCLC cells in vitro. Compared to other PROTACs, AATacs are small, interchangeable but with different degradation efficiency. Our study further expands the repertoire of E3 ligases and their ligands for PROTAC application, improving the versatility and utility of targeted protein degradation for therapeutic purposes.


Asunto(s)
Aminoácidos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteolisis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aminoácidos/farmacología , Aminoácidos/metabolismo , Aminoácidos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Quimera Dirigida a la Proteólisis
7.
Exp Neurol ; 381: 114927, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159912

RESUMEN

Prader-Willi syndrome (PWS) is a multisystemic disorder. Notably, many characteristic symptoms of PWS are correlated with locus coeruleus norepinephrine system (LC-NE) dysfunction, including impairment in arousal, learning, pain modulation, and stress-induced negative affective states. Although electrophysiological experiments in necdin-deficient mice, an established PWS animal model, have revealed decreased spontaneous neuronal firing activity in the LC and impaired excitability, the behavioral phenotypes related to LC-NE dysfunction remain unexplored. In this study, heterozygous necdin-deficient mice (B6.Cg-Ndntm1ky) were bred from wild-type (WT) females to generate WT (+m/+p) and heterozygous (+m/-p) animals. Compared to WT mice, Ndn + m/-p mice demonstrated impaired visual-spatial memory in the Y-maze test, reduced social interaction, impaired sexual recognition, and shorter falling latency on the Rotarod. Using the open field test (OFT) and elevated plus maze (EPM), we observed similar locomotion activity of Ndn + m/-p and WT mice, but Ndn + m/-p mice were less anxious. After acute restraint, Ndn + m/-p mice exhibited significant impairment in stress-induced anxiety. Additionally, the plasma norepinephrine surge following exposure to acute restraint stress was also impaired. Pretreatment with atomoxetine, a norepinephrine reuptake inhibitor aimed to enhance LC function, restored Ndn + m/-p mice to exhibit a normal response to acute restraint stress. Furthermore, by employing chemogenetic approaches to facilitate LC neuronal firing, post-stress anxious responses were also partially rescued in Ndn + m/-p mice. These data strongly suggest that LC dysfunction is implicated in the pathogenesis of stress-related neuropsychiatric symptoms in PWS. Manipulation of LC activity may hold therapeutic potential for patients with PWS.

8.
Am J Cancer Res ; 14(7): 3241-3258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113872

RESUMEN

Cancer is the disease that poses the greatest threat to human health today. Among them, hepatocellular carcinoma (HCC) is particularly prominent due to its high recurrence rate and extremely low five-year postoperative survival rate. In addition to surgical treatment, radiotherapy, chemotherapy, and immunotherapy are the main methods for treating HCC. Due to the natural drug resistance of chemoradiotherapy and targeted drugs, satisfactory results have not been achieved in terms of therapeutic efficacy and cost. AMP-Activated Protein Kinase (AMPK) is a serine/threonine protein kinase. It mainly coordinates the metabolism and transformation of energy between cells, which maintaining a balance between energy supply and demand. The processes of cell growth, proliferation, autophagy, and survival all involve various reaction of cells to energy changes. The regulatory role of AMPK in cellular energy metabolism plays an important role in the occurrence, development, treatment, and prognosis of HCC. Here, we reviewed the latest progress on the regulatory role of AMPK in the occurrence and development of HCC. Firstly, the molecular structure and activation mechanism of AMPK were introduced. Secondly, the emerging regulator related to AMPK and tumors were elaborated. Next, the multitasking roles of AMPK in the occurrence and development mechanism of HCC were discussed separately. Finally, the translational implications and the challenges of AMPK-targeted therapies for HCC treatment were elaborated. In summary, these pieces of information suggest that AMPK can serve as a promising specific therapeutic target for the treatment of HCC.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39009321

RESUMEN

Locally recurrent nasopharyngeal carcinoma (NPC) presents substantial challenges in clinical management. Although postoperative re-irradiation (re-RT) has been acknowledged as a potential treatment option, standardized guidelines and consensus regarding the use of re-RT in this context are lacking. This article provides a comprehensive review and summary of international recommendations on postoperative management for potentially resectable locally recurrent NPC, with a special focus on postoperative re-RT. A thorough search was conducted to identify relevant studies on postoperative re-RT for locally recurrent NPC. Controversial issues, including resectability criteria, margin assessment, indications for postoperative re-RT, and the optimal dose and method of re-RT, were addressed through a Delphi consensus process. The consensus recommendations emphasize the need for a clearer and broader definition of resectability, highlighting the importance of achieving clear surgical margins, preferably through an en bloc approach with frozen section margin assessment. Furthermore, these guidelines suggest considering re-RT for patients with positive or close margins. Optimal postoperative re-RT doses typically range around 60 Gy, and hyperfractionation has shown promise in reducing toxicity. These guidelines aim to assist clinicians in making evidence-based decisions and improving patient outcomes in the management of potentially resectable locally recurrent NPC. By addressing key areas of controversy and providing recommendations on resectability, margin assessment, and re-RT parameters, these guidelines serve as a valuable resource for clinical experts involved in the treatment of locally recurrent NPC.

10.
Acta Otolaryngol ; 144(4): 325-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39033361

RESUMEN

BACKGROUND: Keratinizing squamous cell carcinoma (KSCC) is recognized as WHO I nasopharyngeal carcinoma (NPC). Current guidelines for treating nasopharyngeal cancer do not delineate specific strategies for individual pathologic subtypes. OBJECTIVES: To explore the optimal treatment for KSCC of the nasopharynx. MATERIAL AND METHODS: Data on patients were extracted from the SEER database. Survival differences between patients treated with radiotherapy alone and combined surgery were assessed using Kaplan-Meier and Cox regression models and compared using propensity score matching (PSM). In addition, we explored the survival differences between the two groups of patients in different risk stratifications. RESULTS: In our study, 165 patients underwent surgical intervention, while 1238 patients did not. In both univariate (CSS: p = .001, HR = 0.612; OS: p < .001, HR = 0.623) and multivariate (CSS: p = .004, HR = 0.655; OS: p < .001, HR = 0.655) analyses, combined surgery was identified as a significant prognostic factor. These findings were consistent after PSM. Using RPA, patients were categorized into two groups. CSS improved in the high-risk group, whereas the difference in low-risk patients was not significant. CONCLUSIONS AND SIGNIFICANCE: For patients diagnosed with WHO I nasopharyngeal carcinoma, the combination of radiotherapy and surgery has significant clinical advantages, especially for patients at high risk.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/cirugía , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/cirugía , Anciano , Adulto , Terapia Combinada , Estudios Retrospectivos , Programa de VERF , Estimación de Kaplan-Meier
11.
Zhen Ci Yan Jiu ; 49(7): 767-776, 2024 Jul 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39020496

RESUMEN

Stroke brings the pathological changes of brain tissues such as hematoma formation or ischemia and hypoxia, which leads to neuronal death and axon degeneration. Axon regeneration after its injury is mainly dependent on the surrounding microenvironment and the related proteins, including glial scar, myelin associated inhibitory factors, axon guidance molecules, and neurotrophic factors. All of them affect axon growth by regulating the morphology and orientation of growth cones, the synaptic stability, and the proliferation and differentiation of neural stem cells. This article summarizes the mechanism of acupuncture in regulating axon regeneration after stroke. Acupuncture inhibits glial scar formation, alleviates the inhibitory effects of its physical and chemical barriers on axon growth, reverses the inhibitory effects of myelin-related inhibitory factors on axon growth, and adjusts the level of axon guidance molecules to promote the proliferation and differentiation of neural stem cells and the regeneration of injured axons, and up-regulates neurotrophic factors. Eventually, post-stroke nerve injury can be ameliorated.


Asunto(s)
Terapia por Acupuntura , Axones , Regeneración Nerviosa , Accidente Cerebrovascular , Humanos , Animales , Axones/metabolismo , Axones/fisiología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Células-Madre Neurales/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-39021186

RESUMEN

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

13.
Adv Mater ; : e2403228, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022846

RESUMEN

This study investigates the impact of In- and S-vacancy concentrations on the photocatalytic activity of non-centrosymmetric zinc indium sulfide (ZIS) nanosheets for the hydrogen evolution reaction (HER). A positive correlation between the concentrations of dual In and S vacancies and the photocatalytic HER rate over ZIS nanosheets is observed. The piezoelectric polarization, stimulated by low-frequency vortex vibration to ensure the well-dispersion of ZIS nanosheets in solution, plays a crucial role in enhancing photocatalytic HER over the dual-vacancy engineered ZIS nanosheets. The piezoelectric characteristic of the defective ZIS nanosheets is confirmed through the piezopotential response measured using piezoelectric force microscopy. Piezophotocatalytic H2 evolution over the ZIS nanosheets is boosted under accelerated vortex vibrations. The research explores how vacancies alter ZIS's dipole moment and piezoelectric properties, thereby increasing electric potential gradient and improving charge-separation efficiency, through multi-scale simulations, including Density Functional Theory and Finite Element Analysis, and a machine-learning interatomic potential for defect identification. Increased In and S vacancies lead to higher electric potential gradients in ZIS along [100] and [010] directions, attributing to dipole moment and the piezoelectric effect. This research provides a comprehensive exploration of vacancy engineering in ZIS nanosheets, leveraging the piezopotential and dipole field to enhance photocatalytic performances.

14.
Br J Haematol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031781

RESUMEN

Despite significant progress in treating chronic lymphocytic leukaemia (CLL), resistance to therapy remains challenging. NOTCH1 activation, common in CLL, confers adverse prognosis. This study explores the impact of NOTCH1 signalling on venetoclax sensitivity in vitro. Although NOTCH1 activation minimally impaired the susceptibility of CLL cells to venetoclax, ex vivo cell competition studies reveal that cells with constitutive NOTCH1 activation outgrew their wild-type counterparts in the presence of ongoing venetoclax exposure. Our findings suggest that while NOTCH1 activation is insufficient to confer venetoclax refractoriness, there is enhanced potential for cells with NOTCH1 activation to escape and thus become fully resistant to venetoclax.

15.
Ann Vasc Surg ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032593

RESUMEN

BACKGROUND: In recent years, compression therapy has attracted gradually increasing clinical attention in lower extremity venous diseases. However, basic concepts and clear nomenclature, standard treatment methods, and consistent product standards for pressure equipment are lacking. Therefore, developing clinical guidelines for compression therapy is essential to improving the treatment of venous diseases. METHODS: Our panel generated strong (Grade I), moderate (Grade IIa and IIb), and weak (Grade III) recommendations based on high quality (Class A), moderate quality (Class B), and low quality (Class C) evidence, using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach and the European Society of Cardiology (ESC) grading system. RESULTS: The panels made 30 recommendations from current evidence, focusing on seven fields of lower extremity venous disease (venous thromboembolism, post-thrombotic syndrome, chronic venous insufficiency, varicose veins, hemangioma and vascular malformations, lymphedema, and venous ulcers) and 18 topics. CONCLUSIONS: Of the 30 recommendations made across the 18 topics, 7 were strong (Grade I) and 17 were based on high quality (Class A) evidence, highlighting the need for further research of the use of compression therapy for .

16.
Environ Sci Pollut Res Int ; 31(32): 44885-44899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954344

RESUMEN

The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.


Asunto(s)
Microondas , Ácido Peracético , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Ácido Peracético/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Espectroscopía Infrarroja por Transformada de Fourier
17.
IEEE Trans Image Process ; 33: 4159-4172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985554

RESUMEN

2D-3D joint learning is essential and effective for fundamental 3D vision tasks, such as 3D semantic segmentation, due to the complementary information these two visual modalities contain. Most current 3D scene semantic segmentation methods process 2D images "as they are", i.e., only real captured 2D images are used. However, such captured 2D images may be redundant, with abundant occlusion and/or limited field of view (FoV), leading to poor performance for the current methods involving 2D inputs. In this paper, we propose a general learning framework for joint 2D-3D scene understanding by selecting informative virtual 2D views of the underlying 3D scene. We then feed both the 3D geometry and the generated virtual 2D views into any joint 2D-3D-input or pure 3D-input based deep neural models for improving 3D scene understanding. Specifically, we generate virtual 2D views based on an information score map learned from the current 3D scene semantic segmentation results. To achieve this, we formalize the learning of the information score map as a deep reinforcement learning process, which rewards good predictions using a deep neural network. To obtain a compact set of virtual 2D views that jointly cover informative surfaces of the 3D scene as much as possible, we further propose an efficient greedy virtual view coverage strategy in the normal-sensitive 6D space, including 3-dimensional point coordinates and 3-dimensional normal. We have validated our proposed framework for various joint 2D-3D-input or pure 3D-input based deep neural models on two real-world 3D scene datasets, i.e., ScanNet v2 and S3DIS, and the results demonstrate that our method obtains a consistent gain over baseline models and achieves new top accuracy for joint 2D and 3D scene semantic segmentation. Code is available at https://github.com/smy-THU/VirtualViewSelection.

18.
ACS Omega ; 9(23): 24593-24600, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882078

RESUMEN

This study synthesized core/shell gold-platinum nanoparticles and characterized their colorimetric properties; ultraviolet-visible spectroscopy revealed that the synthesized nanoparticles exhibited distinct colors from conventional gold nanoparticles. Furthermore, the nanoparticles were subjected to lateral flow assays using Protein A, and the results revealed that they outperformed conventional spherical gold nanoparticles in terms of color development. This improvement can be attributed to the distinct core/shell structures of our nanoparticles. Further evaluation revealed that these nanoparticles could facilitate the detection of Clostridium difficile Toxin B visually at an extremely low concentration (1 ng/mL) without the requirement for advanced instrumentation. This substantial improvement in sensitivity can be attributed to the meticulous design and nanoscale engineering of the structure of the nanoparticles.

19.
Acta Pharmacol Sin ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858494

RESUMEN

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

20.
Biomed Opt Express ; 15(5): 2741-2752, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855671

RESUMEN

Hemodynamics can be explored through various biomedical imaging techniques. However, observing transient spatiotemporal variations in the saturation of oxygen (sO2) within human blood vessels proves challenging with conventional methods. In this study, we employed photoacoustic computed tomography (PACT) to reconstruct the evolving spatiotemporal patterns in a human vein. Through analysis of the multi-wavelength photoacoustic (PA) spectrum, we illustrated the dynamic distribution within blood vessels. Additionally, we computationally rendered the dynamic process of venous blood flowing into the major vein and entering a branching vessel. Notably, we successfully recovered, in real time, the parabolic wavefront profile of laminar flow inside a deep vein in vivo-a first-time achievement. While the study is preliminary, the demonstrated capability of dynamic sO2 imaging holds promise for new applications in biology and medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...