RESUMEN
INTRODUCTION: Research examining the role of inflammation in psychosis has produced inconsistent results. Variables that influence inflammation, including antipsychotic medication, are inconsistently controlled across studies and variation of inflammatory analytes across stages of psychosis may also influence findings. The purpose of this study was to assess for evidence of immuno-inflammatory dysregulation across the stages of early psychosis. We examined a immuno-inflammatory analytes in subjects at clinical high risk (CHR) for developing a psychotic disorder, antipsychotic-naïve (-n) and antipsychotic treated (-a) subjects in their first episode of psychosis (FEP), and healthy control (HC) subjects. METHODS: A total of 11 subjects at CHR, 50 subjects within their FEP (40 FEP-n, 10 FEP-a), and 10 HC subjects were recruited from early psychosis programs in San Diego and Mexico City. Plasma was collected for biomarker assay. RESULTS: Immuno-inflammatory analytes significantly differed between groups: Interferon-gamma (IFN-γ), Interleukin-10 (IL-10), Eotaxin-1, Interferon Gamma-Induced Protein-10 (IP-10), Monocyte Chemotactic Protein-1 (MCP-1), Macrophage-Derived Chemokine (MDC), Macrophage Inflammatory Protein-1 beta (MIP-1ß), Thymus and Activation Regulated Chemokine (TARC), and Brain Derived Neurotropic Factor (BDNF). Post-hoc analyses revealed an overall pattern of higher levels of IL-10, MCP-1, MIP-1ß, TARC, and BDNF in CHR as compared to FEP-a, FEP-n, and HC subjects. CONCLUSIONS: Results reveal a profile of immuno-inflammatory dysregulation in early stages of psychosis prior to psychotic conversion and treatment with antipsychotic medication. The CHR phase of early psychosis may represent a period of increased immuno-inflammatory activation, but due to limited sample size, these results deserve replication in a well characterized early psychosis population.