Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(43): 18293-18299, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723309

RESUMEN

In order to maintain the thermal stability of SOT devices with nanoscale size, it is desirable to achieve current induced magnetic switching in magnetic materials with high perpendicular anisotropy. In the present paper, current induced field-free switching of FePt/[TiN/NiFe]5 is achieved by interlayer exchange coupling, in which in-plane magnetized NiFe serves as a coupling layer through a TiN space layer. The large Ku (1.03 × 107 erg cc-1) and low critical current density values (0.17 × 107 A cm-2) show great advantages in thermal stability and energy consumption. Interestingly, it is found that the rotation directions of the current-induced magnetic switching loops under different applied magnetic fields are dependent on the sputtering temperature of [TiN/NiFe]5 multilayers: once sign change for FePt/[TiN/NiFe]5 RT and three sign changes for FePt/[TiN/NiFe]5 HT. Simultaneously, when the magnetization direction of NiFe changes from the Hx direction to -Hx direction, the switching polarities at Hx = 0 always remain unchanged, which is different from other groups' reports. These phenomena may be attributed to the combined effect of TiN layer thickness induced ferromagnetic or antiferromagnetic coupling and the inherent Hin. Furthermore, gradual tuning of resistance states through the trains of current pulses has also been realized, showing potential applications in artificial synaptic networks. These results will put forward the applications of L10-FePt in current controlled MRAM and neuromorphic computing.

2.
Sensors (Basel) ; 21(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202463

RESUMEN

A seismic data acquisition system based on wireless network transmission is designed to improve the low-frequency response and low sensitivity of the existing acquisition system. The system comprises of a piezoelectric transducer, a high-resolution data acquisition system, and a wireless communication module. A seismic piezoelectric transducer based on a piezoelectric simply supported beam using PMN-PT is proposed. High sensitivity is obtained by using a new piezoelectric material PMN-PT, and a simply supported beam matching with the PMN-PT wafer is designed, which can provide a good low-frequency response. The data acquisition system includes an electronic circuit for charge conversion, filtering, and amplification, an FPGA, and a 24-bit analog-to-digital converter (ADC). The wireless communication was based on the ZigBee modules and the WiFi modules. The experimental results show that the application of the piezoelectric simply supported beam based on PMN-PT can effectively improve the sensitivity of the piezoelectric accelerometer by more than 190%, compared with the traditional PZT material. At low frequencies, the fidelity of the PMN-PT piezoelectric simply supported beam is better than that of a traditional central compressed model, which is an effective expansion of the bandwidth to the low-frequency region. The charge conversion, filtering, amplification, and digitization of the output signal of the piezoelectric transducer are processed and, finally, are wirelessly transmitted to the monitoring centre, achieving the design of a seismic data acquisition system based on wireless transmission.

3.
J Nanosci Nanotechnol ; 20(10): 6489-6494, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32385003

RESUMEN

To study the substitutability of noble metal electrodes in memristors, the effect of Pt/HfO2/Ti structure on the replacement of noble metal electrode Pt by different electrodes was studied. Compared with the unsubstituted devices, the HfO2-based RRAM devices with TiN and TiOxNy electrodes devices showed good resistive switching performance and resistive switching mechanism under oxygen ion migration. Five devices were prepared, and their resistive switching mechanism under oxygen ion migration was investigated. Moreover, besides the resistive switching phenomenon of these RRAM devices, it was found that significant rectifying characteristics were exhibited in a highresistance state (HRS). This phenomenon can be explained by regulation of the Schottky barrier of the interface between the top electrode and the resistive layer, which can be influenced by the migration of oxygen vacancies.

4.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053934

RESUMEN

The detection resolution of a giant magneto-impedance (GMI) sensor is mainly limited by its equivalent input magnetic noise. The noise characteristics of a GMI sensor are evaluated by noise modeling and simulation, which can further optimize the circuit design. This paper first analyzes the noise source of the GMI sensor. It discusses the noise model of the circuit, the output sensitivity model and the modeling process of equivalent input magnetic noise. The noise characteristics of three modules that have the greatest impact on the output noise are then simulated. Finally, the simulation results are verified by experiments. By comparing the simulated noise spectrum curve and the experimental noise spectrum curve, it is demonstrated that the preamplifier and the multiplier contribute the most to the output white noise, and the low-pass filter plays a major role in the output 1/f noise. These modules should be given priority in the optimization of the noise of the conditioning circuit. The above results provide technical support for the practical application of low-noise GMI magnetometers.

5.
Sensors (Basel) ; 18(7)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933604

RESUMEN

By using a multi-scale measurement technique, a high-sensitivity and large dynamic-range sensor array, which consisted of a single resonator and a series of cascaded resonators with a sensing ring and a reference ring, was modeled, and its transmission properties were investigated theoretically and numerically. We also set forth the principle of a multi-scale measurement technique based on the transmission spectrum of a resonator. This sensor array could have a nearly tenfold increase in sensitivity, and an improved dynamic range in an arrow wavelength range. The simulated results were in good agreement with the theoretical analysis.

6.
J Nanosci Nanotechnol ; 18(4): 2711-2715, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442947

RESUMEN

The effects of TiN-MgO intermediate layer on the microstructure and magnetic properties of FePt-SiNx-C films were investigated. With doping MgO into TiN, three components were formed, including titanium dioxide, titanium nitride and titanium oxynitride. This caused the decrease of the surface energy and the increase of the interface energy, and further induced the promotion of island growth of FePt, thus the improvement of the isolation and the decrease of FePt grains. On the other hand, the decrease of surface energy and the forming of some titanium dioxide with doping MgO would accompany the deterioration of epitaxial growth and thus the deterioration of the perpendicular magnetic anisotropy of FePt films in a certain degree. By optimizing the concentration of TiN and MgO, the FePt-SiNx-C films with small grain size of 5.86±1.03 nm and good perpendicular anisotropy would be obtained.

7.
Opt Express ; 25(2): 960-971, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28157990

RESUMEN

We propose and experimentally demonstrate a continuously tunable all-optical microwave filter using a silicon opto-mechanical microring resonator (MRR). By finely adjusting the pump light with submilliwatt power level, transmission spectrum of the MRR could be continuously shifted based on the nonlinear effects, including the opto-mechanical effect and thermo-optic effect. Therefore, in the case of optical single sideband (OSSB) modulation, the frequency intervals between the optical carrier (near one MRR resonance) and the corresponding resonance could be flexibly manipulated, which is the critical factor to achieve continuously tunable microwave photonic filter (MPF). In the experiment, the central frequency of the MPF could be continuously tuned from 6 GHz to 19 GHz with the pump power lower than -2.5 dBm. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages, such as compact footprint, all-optical control and low power consumption. In the future, using light to control light, the opto-mechanical structure on silicon platforms might have many other potential applications in microwave systems, such as microwave switch.

8.
Appl Opt ; 55(17): 4670-5, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27409024

RESUMEN

The maximum spectrum of the continuous wavelet transform (MSCWT) is proposed to demodulate the central wavelengths for the overlapped spectrum in a serial fiber Bragg grating (FBG) sensing system. We describe the operation principle of the MSCWT method. Moreover, the influence of the interval gap between two FBG wavelengths, 3 dB bandwidths, and optical powers of the reflected spectra are discussed. The simulation and experimental results indicate that the MSCWT can resolve an overlapped spectrum and decode the central wavelength with high accuracy. More importantly, the proposed peak detection method can enhance the sensing capacity of a wavelength division multiplexing FBG sensor network.

9.
Opt Express ; 18(10): 10567-80, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20588909

RESUMEN

Wideband dispersion-free slow light in chirped-slot photonic-crystal coupled waveguides is proposed and theoretically investigated in detail. By systematically analyzing the dependence of band shape on various structure parameters, unique inflection points in the key photonic band with approximate zero group velocity can be obtained in an optimized slot photonic-crystal coupled waveguide. By simply chirping the widths of the photonic-crystal waveguides in the optimized structure, wideband (up to 20 nm) slow-light with optical confinement in the low dielectric slot is demonstrated numerically with relative temporal pulse-width spreading well below 8% as obtained from two-dimensional finite-difference time-domain simulations. The wideband slow-light operation of the proposed structures would offer significant potential for novel compact high-speed optical-signal-processing devices in silicon-based systems.


Asunto(s)
Modelos Teóricos , Refractometría/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Cristalización , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...