Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroprotection ; 1(2): 84-98, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223913

RESUMEN

The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-ß (Aß) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aß antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aß and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aß from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.

2.
Biol Psychiatry ; 69(10): 936-44, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21195390

RESUMEN

BACKGROUND: There is increasing evidence that antipsychotic (APD) may affect brain structure directly. To examine this, we developed a rodent model that uses clinically relevant doses and serial magnetic resonance imaging (MRI), followed by postmortem histopathological analysis to study the effects of APD on brain structures. METHODS: Antipsychotic , haloperidol, and olanzapine were continuously administered to rats via osmotic minipumps to maintain clinic-like steady state levels for 8 weeks. Longitudinal in vivo MRI scanning (T2-weighted) was carried out at baseline, 4 weeks, and 8 weeks, after which animals were perfused and their brains preserved for ex vivo MRI scanning. Region of interest analyses were performed on magnetic resonance images (both in vivo as well as ex vivo) along with postmortem stereology using the Cavalieri estimator probe. RESULTS: Chronic (8 weeks) exposure to both haloperidol and olanzapine resulted in significant decreases in whole-brain volume (6% to 8%) compared with vehicle-treated control subjects, driven mainly by a decrease in frontal cerebral cortex volume (8% to 12%). Hippocampal, corpus striatum, lateral ventricles, and corpus callosum volumes were not significantly different from control subjects, suggesting a differential effect of APD on the cortex. These results were corroborated by ex vivo MRI scans and decreased cortical volume was confirmed postmortem by stereology. CONCLUSIONS: This is the first systematic whole-brain MRI study of the effects of APD, which highlights significant effects on the cortex. Although caution needs to be exerted when extrapolating results from animals to patients, the approach provides a tractable method for linking in vivo MRI findings to their histopathological origins.


Asunto(s)
Antipsicóticos/farmacología , Benzodiazepinas/farmacología , Encéfalo/efectos de los fármacos , Cloroquinolinoles/farmacología , Imagen por Resonancia Magnética , Análisis de Varianza , Animales , Antipsicóticos/sangre , Benzodiazepinas/sangre , Cloroquinolinoles/sangre , Bombas de Infusión Implantables , Ventrículos Laterales/efectos de los fármacos , Masculino , Masticación/efectos de los fármacos , Movimiento/efectos de los fármacos , Olanzapina , Tamaño de los Órganos/efectos de los fármacos , Cambios Post Mortem , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
3.
Neuroimage ; 54 Suppl 1: S106-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20149882

RESUMEN

Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.


Asunto(s)
Antineoplásicos/uso terapéutico , Política de Salud/legislación & jurisprudencia , Política de Salud/tendencias , Nanomedicina/legislación & jurisprudencia , Nanomedicina/tendencias , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Imagenología Tridimensional/métodos , Nanomedicina/métodos , Nanoestructuras/uso terapéutico , Medicina de Precisión/métodos , Medicina de Precisión/tendencias
4.
Curr Stem Cell Res Ther ; 1(1): 55-63, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18220854

RESUMEN

Transplantation of stem cells into the damaged brain can lead to behavioral recovery. However, at present, the mechanisms by which these cells exert their beneficial effects are still poorly understood. Survival, migration and differentiation are but a few of the factors that are thought to be involved in stem cell-mediated brain repair. It is hoped that neuroimaging, by MRI and PET, will provide serial in vivo assessments of transplanted cells that can lead to a greater understanding of the mechanisms involved in brain repair.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trasplante de Células Madre , Encefalopatías/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA