Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur Heart J Cardiovasc Imaging ; 23(4): 498-507, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33668064

RESUMEN

AIMS: We sought to assess the feasibility of constructing right ventricular (RV) pressure-volume (PV) loops solely by echocardiography. METHODS AND RESULTS: We performed RV conductance and pressure wire (PW) catheterization with simultaneous echocardiography in 35 patients with pulmonary hypertension. To generate echocardiographic PV loops, a reference RV pressure curve was constructed using pooled PW data from the first 20 patients (initial cohort). Individual pressure curves were then generated by adjusting the reference curve according to RV isovolumic and ejection phase duration and estimated RV systolic pressure. The pressure curves were synchronized with echocardiographic volume curves. We validated the reference curve in the remaining 15 patients (validation cohort). Methods were compared with correlation and Bland-Altman analysis. In the initial cohort, echocardiographic and conductance-derived PV loop parameters were significantly correlated {rho = 0.8053 [end-systolic elastance (Ees)], 0.8261 [Ees/arterial elastance (Ea)], and 0.697 (stroke work); all P < 0.001}, with low bias [-0.016 mmHg/mL (Ees), 0.1225 (Ees/Ea), and -39.0 mmHg mL (stroke work)] and acceptable limits of agreement. Echocardiographic and PW-derived Ees were also tightly correlated, with low bias (-0.009 mmHg/mL) and small limits of agreement. Echocardiographic and conductance-derived Ees, Ees/Ea, and stroke work were also tightly correlated in the validation cohort (rho = 0.9014, 0.9812, and 0.9491, respectively; all P < 0.001), with low bias (0.0173 mmHg/mL, 0.0153, and 255.1 mmHg mL, respectively) and acceptable limits. CONCLUSION: The novel echocardiographic method is an acceptable alternative to invasively measured PV loops to assess contractility, RV-arterial coupling, and RV myocardial work. Further validation is warranted.


Asunto(s)
Hipertensión Pulmonar , Accidente Cerebrovascular , Disfunción Ventricular Derecha , Ecocardiografía , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Volumen Sistólico , Función Ventricular Derecha , Presión Ventricular
2.
Circ Cardiovasc Imaging ; 12(9): e009047, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500448

RESUMEN

BACKGROUND: The ratios of tricuspid annular plane systolic excursion (TAPSE)/echocardiographically measured systolic pulmonary artery pressure (PASP), fractional area change/invasively measured mean pulmonary artery pressure, right ventricular (RV) area change/end-systolic area, TAPSE/pulmonary artery acceleration time, and stroke volume/end-systolic area have been proposed as surrogates of RV-arterial coupling. The relationship of these surrogates with the gold standard measure of RV-arterial coupling (invasive pressure-volume loop-derived end-systolic/arterial elastance [Ees/Ea] ratio) and RV diastolic stiffness (end-diastolic elastance) in pulmonary hypertension remains incompletely understood. We evaluated the relationship of these surrogates with invasive pressure-volume loop-derived Ees/Ea and end-diastolic elastance in pulmonary hypertension. METHODS: We performed right heart echocardiography and cardiac magnetic resonance imaging 1 day before invasive measurement of pulmonary hemodynamics and single-beat RV pressure-volume loops in 52 patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. The relationships of the proposed surrogates with Ees/Ea and end-diastolic elastance were evaluated by Spearman correlation, multivariate logistic regression, and receiver operating characteristic analyses. Associations with prognosis were evaluated by Kaplan-Meier analysis. RESULTS: TAPSE/PASP, fractional area change/mean pulmonary artery pressure, RV area change/end-systolic area, and stroke volume/end-systolic area but not TAPSE/pulmonary artery acceleration time were correlated with Ees/Ea and end-diastolic elastance. Of the surrogates, only TAPSE/PASP emerged as an independent predictor of Ees/Ea (multivariate odds ratio: 18.6; 95% CI, 0.8-96.1; P=0.08). In receiver operating characteristic analysis, a TAPSE/PASP cutoff of 0.31 mm/mm Hg (sensitivity: 87.5% and specificity: 75.9%) discriminated RV-arterial uncoupling (Ees/Ea <0.805). Patients with TAPSE/PASP <0.31 mm/mm Hg had a significantly worse prognosis than those with higher TAPSE/PASP. CONCLUSIONS: Echocardiographically determined TAPSE/PASP is a straightforward noninvasive measure of RV-arterial coupling and is affected by RV diastolic stiffness in severe pulmonary hypertension. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03403868.


Asunto(s)
Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/fisiopatología , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/fisiopatología , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/fisiopatología , Biomarcadores/sangre , Cateterismo Cardíaco , Progresión de la Enfermedad , Ecocardiografía Doppler , Femenino , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sistema de Registros , Sístole
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA