Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(21): 31224-31239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632197

RESUMEN

Driven by climate change and human activity, Sargassum blooming rates have intensified, producing copious amount of the invasive, pelagic seaweed across the Caribbean and Latin America. Battery recycling and lead-smelter wastes have heavily polluted the environment and resulted in acute lead poisoning in children through widespread heavy metal contamination particular in East Trinidad. Our study details a comprehensive investigation into the use of Sargassum (S. natans), as a potential resource-circular feedstock for the synthesis of calcium alginate beads utilized in heavy metal adsorption, both in batch and column experiments. Here, ionic cross-linking of extracted sodium alginate with calcium chloride was utilized to create functional ion-exchange beads. Given the low quality of alginates extracted from Sargassum which produce poor morphological beads, composite beads in conjunction with graphene oxide and acrylamide were used to improve fabrication. Stand-alone calcium alginate beads exhibited superior Pb2+ adsorption, with a capacity of 213 mg g-1 at 20 °C and pH 3.5, surpassing composite and commercial resins. Additives like acrylamide and graphene oxide in composite alginate resins led to a 21-40% decrease in Pb2+ adsorption due to reduced active sites. Column operations confirmed Alginate systems' practicality, with 20-24% longer operating times, 15 times lower adsorbent mass on scale-up and 206% smaller column diameters compared to commercial counterparts. Ultimately, this study advocates for Sargassum-based Alginate ion-exchange beads as a bio-based alternative in Trinidad and developing nations for dealing with heavy metal ion waste, offering superior heavy metal adsorption performance and supporting resource circularity.


Asunto(s)
Alginatos , Resinas de Intercambio Iónico , Plomo , Sargassum , Sargassum/química , Alginatos/química , Adsorción , Plomo/química , Resinas de Intercambio Iónico/química
2.
Data Brief ; 31: 105837, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32637470

RESUMEN

This article presents data associated with the extraction of sodium alginate from waste Sargassum seaweed in the Caribbean utilizing an optimization approach using Response Surface Methodology [1]. A Box-Behnken (BBD) Response Surface Methodology using Design Expert 10.0.3 software on the alkaline extraction process was used. Data consists of the effects of 4 process variables (temperature, extraction time, alkali concentration and excess volume of alkali: dried seaweed) on the yield of sodium alginate. The model was validated, and extracts were characterization using High Performance Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The data illustrates the applicability of our model in potentially valorizing this waste product into a valuable resource. Furthermore, our methodology can be applied to other macroalgae for efficient extraction of sodium alginate of commercial quality.

3.
Adv Colloid Interface Sci ; 275: 102079, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31787216

RESUMEN

Colloidal Liquid Aphrons (CLAs) are micron sized discrete spherical solvent droplets formed by the dispersion of polyaphrons into a bulk aqueous phase at a low phase volume ratio where they can be kept homogenously suspended with only minimal agitation. CLAs have high stability due to the presence of a surfactant 'shell' surrounding the solvent core, and possess large surface areas per unit volume for mass transfer due to their small size. Therefore, CLAs are well suited for applications in pre-dispersed solvent extraction (PSE), enzyme immobilization, and have the potential to be used as a drug delivery system. Using PSE, CLAs have been used to remove metals such as Ni2+, Cu2+, Fe3+, Cr3+ and Mg2+ from dilute streams, separate organic dyes such as Yellow 1 from wastewater, extract succinic and lactic acid, reactively extract phenylalanine, and separate suspensions. CLAs have also been used to immobilize enzymes such as lipase, lysozyme and albumins with cases of superactivity being reported due to the influence of surfactant and solvent interactions with the enzyme. Furthermore, due to their similarity to current drug delivery systems such as microemulsions and hydrogels, and other advantages, CLA systems have the potential to be adapted for drug delivery systems also. This article provides a complete list of the current applications of Colloidal Liquid Aphrons (CLAs) in PSE and enzyme immobilization, and also presents insight into how CLAs can be utilized as a drug delivery method in the future. Finally, this review ends by summarizing potentially interesting research areas to pursue in this field.


Asunto(s)
Albúminas/química , Sistemas de Liberación de Medicamentos , Enzimas Inmovilizadas/química , Lipasa/química , Muramidasa/química , Coloides/química , Coloides/aislamiento & purificación , Coloides/metabolismo , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Muramidasa/metabolismo , Tamaño de la Partícula , Solventes/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA