Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Res Tech ; 85(9): 3069-3094, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35611771

RESUMEN

In this report, ZnO nanoparticles were biosynthesized using Paspalum scrobiculatum grains extract for the first time. GC-MS analysis explicated that diethyl phthalate was the major phytocompound with 94.09% in aqueous extract. ZnO nanoparticles formation was confirmed by various physicochemical analyses. HR-TEM images showed the hexagonal, rectangular shaped nanoparticles in 15-30 nm size. The antioxidant, anti-inflammatory, and anti-diabetic analyses showed the effective bioactivity of ZnO nanoparticles in 80 µg/ml concentration with 95.36%, 94.08%, and 91.96%, respectively. The morphological and tissue changes witnessed in larvicidal and insecticidal activities against Culex tritaeniorhynchus and Tribolium castaneum revealed the efficient nature of ZnO nanoparticles in 100 ppm at 48 h and 100 µg/kg at 72 h, respectively. The morphological changes in antibacterial activity demonstrated the bactericidal nature of ZnO nanoparticles against Salmonella typhi and Staphylococcus aureus in 150 µg/ml concentration. The morphological observations in anticancer activity against HepG2 liver cancer cells showed the potent drug features of ZnO nanoparticles in 100 µg/ml concentration with 97.18% of cytotoxicity. The ZnO nanoparticles showed no toxicity against HDF normal cells in lower concentrations and it explicated the biocompatible features of nanoparticles. The Vigna radiata plant growth was efficiently promoted by low (60 ppm) concentration of nanoparticles. The ZnO nanoparticles divulged effective degradation of IPA, EDTA, BQ, and DPBF in 75%, 45%, 55%, and 80% through ROS formation, respectively. Thus, the synthesized ZnO nanoparticles are biocompatible and inexpensive material compared to the traditional one and can be utilized as an efficient material in biological fields. RESEARCH HIGHLIGHTS: Efficient larvicidal and insecticidal activities were evinced at low IC50 value. The ZnO nanoparticles were non-toxic to HDP (fibroblast) normal cells. Efficient plant growth was attained at 60 ppm concentration.


Asunto(s)
Insecticidas , Nanopartículas del Metal , Paspalum , Óxido de Zinc , Antibacterianos/química , Insecticidas/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Paspalum/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
2.
J Biomater Sci Polym Ed ; 32(17): 2210-2226, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34319846

RESUMEN

In this work, we prepared silver nanoparticles (AgNPs)-loaded poly(2,5-dimethoxyaniline;PDMA) nanocomposite via a simple chemical oxidative method to develop new effective biocidal and anticancer agents systems. In situ UV-vis and fluorescence spectroscopy has been used to monitor the formation of PDMA/Ag is strongly dependent on the concentration of PDMA in the present system. The FTIR and XRD studies exhibit that the rate of polymer formation and oxidation state of PDMA/Ag nanocomposite, which confirmed the AgNPs is strongly binding with the PDMA matrix. SEM and EDAX analysis revealed the presence of uniform size and the highest percentage of AgNPs (42.1%) in the PDMA/Ag nanocomposite. TEM and size distribution analysis revealed the presence of spherical AgNPs with an average diameter of 25 nm in the PDMA/Ag nanocomposite. In addition, the PDMA polymer with embedded AgNPs exhibited excellent antibacterial performance against Escherichia coli and Staphylococcus aureus. Interestingly, the prepared PDMA/Ag nanocomposite exhibited enhanced bactericidal performance compared with the PDMA polymer, presumably because of the antibacterial properties of the AgNPs substrate. The anticancer effects of combined treatment with PDMA polymer and AgNPs were evaluated using a series of cellular and biochemical assays. The findings from this study revealed that the PDMA/Ag nanocomposite treatment significantly inhibited cell viability and proliferation of the human cervical cancer cell line (HeLa). The PDMA/Ag nanocomposite exhibits better antibacterial and anticancer activities compare to pristine PDMA.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Antineoplásicos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Polímeros , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...