Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 40(24): 3140-3152, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29757092

RESUMEN

This work was focused on finding the groundnut shell (GNS) gasification performance in a fluidized bed gasifier with bubbling air as gasification medium. GNS in powder form (a mixture of different particle size as given in table 8 in the article) was gasified using naturally available river sand as bed material, top of the bed feeding, conventional charcoal as bed heating medium, and two cyclones for proper cleaning and cooling the product gas. Experiments were performed using different operating conditions such as equivalence ratio (ER) between 0.29 and 0.33, bed temperature between 650°C and 800°C, and feedstock feeding rate between 36 and 31.7 kg/h. Different parameters were evaluated to study the gasifier performance such as gas yield, cold gas efficiency, carbon conversion efficiency (CCE), and high heating value. The most suitable ER value was found to be 0.31, giving the most stable bed temperature profile at 714.4°C with 5-10% fluctuation. Cold gas efficiency and CCE at optimal ER of 0.31 was found to be 71.8% and 91%, respectively.


Asunto(s)
Carbón Orgánico , Gases , Biomasa , Carbono , Tamaño de la Partícula , Temperatura
2.
Bioresour Technol ; 188: 258-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25770670

RESUMEN

Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application.


Asunto(s)
Biocombustibles , Biomasa , Carbón Orgánico/química , Microbiología Industrial/métodos , Reactores Biológicos , Carbono/química , Diseño de Equipo , Gases , Calor , Tamaño de la Partícula , Aceites de Plantas/química , Tallos de la Planta/química , Suelo , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Termogravimetría , Madera
3.
Bioresour Technol ; 178: 45-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25446789

RESUMEN

An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.


Asunto(s)
Agricultura , Aire , Reactores Biológicos , Biotecnología/métodos , Carbón Orgánico/química , Carbono/química , Catálisis , Cerámica , Electricidad , Gases , Calor , Hidrodinámica , Oryza , Tamaño de la Partícula
4.
Bioresour Technol ; 123: 558-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22944490

RESUMEN

Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase.


Asunto(s)
Ácido Acético/química , Compuestos de Aluminio/química , Biotecnología/métodos , Compuestos de Calcio/química , Cobre/química , Hidrógeno/metabolismo , Vapor , Zinc/química , Catálisis , Tamaño de la Partícula , Temperatura , Factores de Tiempo , Difracción de Rayos X
5.
Langmuir ; 26(23): 17821-6, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21043453

RESUMEN

Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) is added. Similar addition of [bmim][PF(6)] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF(4)] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF(4)]), and inorganic salts NaPF(6) and NaBF(4), only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim(+) cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF(6)] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim(+) becomes involved in cation-π interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim(+) results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA