Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123397

RESUMEN

BACKGROUND: The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether reducing the number of segmented metastases per patient affects predictive capacity. METHODS: The total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months; and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus clinical parameters. RESULTS: The whole-tumour-load delta radiomics model performed best for BOR (AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months (AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model, statistical significance was not reached. CONCLUSIONS: The findings indicate that delta radiomics may offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could be advantageous.

2.
Insights Imaging ; 15(1): 124, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825600

RESUMEN

OBJECTIVES: Achieving a consensus on a definition for different aspects of radiomics workflows to support their translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a successful clinical workflow implementation. MATERIALS AND METHODS: The consensus was achieved by a multi-stage process. Stage 1 comprised a definition screening, a retrospective analysis with semantic mapping of terms found in 22 workflow definitions, and the compilation of an initial baseline definition. Stages 2 and 3 consisted of a Delphi process with over 45 experts hailing from sites participating in the German Research Foundation (DFG) Priority Program 2177. Stage 2 aimed to achieve a broad consensus for a definition proposal, while stage 3 identified the importance of translational challenges. RESULTS: Workflow definitions from 22 publications (published 2012-2020) were analyzed. Sixty-nine definition terms were extracted, mapped, and semantic ambiguities (e.g., homonymous and synonymous terms) were identified and resolved. The consensus definition was developed via a Delphi process. The final definition comprising seven phases and 37 aspects reached a high overall consensus (> 89% of experts "agree" or "strongly agree"). Two aspects reached no strong consensus. In addition, the Delphi process identified and characterized from the participating experts' perspective the ten most important challenges in radiomics workflows. CONCLUSION: To overcome semantic inconsistencies between existing definitions and offer a well-defined, broad, referenceable terminology, a consensus workflow definition for radiomics-based setups and a terms mapping to existing literature was compiled. Moreover, the most relevant challenges towards clinical application were characterized. CRITICAL RELEVANCE STATEMENT: Lack of standardization represents one major obstacle to successful clinical translation of radiomics. Here, we report a consensus workflow definition on different aspects of radiomics studies and highlight important challenges to advance the clinical adoption of radiomics. KEY POINTS: Published radiomics workflow terminologies are inconsistent, hindering standardization and translation. A consensus radiomics workflow definition proposal with high agreement was developed. Publicly available result resources for further exploitation by the scientific community.

3.
Int J Comput Assist Radiol Surg ; 19(9): 1689-1697, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38814528

RESUMEN

PURPOSE: AI-assisted techniques for lesion registration and segmentation have the potential to make CT-based tumor follow-up assessment faster and less reader-dependent. However, empirical evidence on the advantages of AI-assisted volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans is lacking. The aim of this study was to assess the efficiency, quality, and inter-reader variability of an AI-assisted workflow for volumetric segmentation of lymph node and soft tissue metastases in follow-up CT scans. Three hypotheses were tested: (H1) Assessment time for follow-up lesion segmentation is reduced using an AI-assisted workflow. (H2) The quality of the AI-assisted segmentation is non-inferior to the quality of fully manual segmentation. (H3) The inter-reader variability of the resulting segmentations is reduced with AI assistance. MATERIALS AND METHODS: The study retrospectively analyzed 126 lymph nodes and 135 soft tissue metastases from 55 patients with stage IV melanoma. Three radiologists from two institutions performed both AI-assisted and manual segmentation, and the results were statistically analyzed and compared to a manual segmentation reference standard. RESULTS: AI-assisted segmentation reduced user interaction time significantly by 33% (222 s vs. 336 s), achieved similar Dice scores (0.80-0.84 vs. 0.81-0.82) and decreased inter-reader variability (median Dice 0.85-1.0 vs. 0.80-0.82; ICC 0.84 vs. 0.80), compared to manual segmentation. CONCLUSION: The findings of this study support the use of AI-assisted registration and volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans. The AI-assisted workflow achieved significant time savings, similar segmentation quality, and reduced inter-reader variability compared to manual segmentation.


Asunto(s)
Metástasis Linfática , Melanoma , Tomografía Computarizada por Rayos X , Flujo de Trabajo , Humanos , Estudios Retrospectivos , Melanoma/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Persona de Mediana Edad , Metástasis Linfática/diagnóstico por imagen , Anciano , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Inteligencia Artificial , Adulto , Variaciones Dependientes del Observador , Neoplasias Cutáneas/diagnóstico por imagen , Estadificación de Neoplasias
4.
PLoS One ; 19(1): e0296253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38180971

RESUMEN

BACKGROUND: Checkpoint inhibitors have drastically improved the therapy of patients with advanced melanoma. 18F-FDG-PET/CT parameters might act as biomarkers for response and survival and thus can identify patients that do not benefit from immunotherapy. However, little literature exists on the association of baseline 18F-FDG-PET/CT parameters with progression free survival (PFS), best overall response (BOR), and overall survival (OS). MATERIALS AND METHODS: Using a whole tumor volume segmentation approach, we investigated in a retrospective registry study (n = 50) whether pre-treatment 18F-FDG-PET/CT parameters of three subgroups (tumor burden, tumor glucose uptake and non-tumoral hematopoietic tissue metabolism), can act as biomarkers for the primary endpoints PFS and BOR as well as for the secondary endpoint OS. RESULTS: Compared to the sole use of clinical parameters, baseline 18F-FDG-PET/CT parameters did not significantly improve a Cox proportional-hazard model for PFS (C-index/AIC: 0.70/225.17 and 0.68/223.54, respectively; p = 0.14). A binomial logistic regression analysis for BOR was not statistically significant (χ2(15) = 16.44, p = 0.35), with a low amount of explained variance (Nagelkerke's R2 = 0.38). Mean FDG uptake of the spleen contributed significantly to a Cox proportional-hazard model for OS (HR 3.55, p = 0.04). CONCLUSIONS: The present study could not confirm the capability of the pre-treatment 18F-FDG-PET/CT parameters tumor burden, tumor glucose uptake and non-tumoral hematopoietic tissue metabolism to act as biomarkers for PFS and BOR in metastatic melanoma patients receiving first-line immunotherapy. The documented potential of 18F-FDG uptake by immune-mediating tissues such as the spleen to act as a biomarker for OS has been reproduced.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Melanoma/diagnóstico por imagen , Melanoma/tratamiento farmacológico , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Supervivencia sin Progresión , Estudios Retrospectivos , Inmunoterapia , Biomarcadores , Glucosa
5.
Diagnostics (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37892030

RESUMEN

BACKGROUND: The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as well as overall survival after six and twelve months in patients with stage IV malignant melanoma undergoing first-line targeted therapy. METHODS: A baseline machine-learning model using clinical variables (demographic parameters and tumor markers) was compared with an extended model using clinical variables and radiomic features of the whole tumor burden, utilizing repeated five-fold cross-validation. Baseline CTs of 91 stage IV malignant melanoma patients, all treated in the same university hospital, were identified in the Central Malignant Melanoma Registry and all metastases were volumetrically segmented (n = 4727). RESULTS: Compared with the baseline model, the extended radiomics model did not add significantly more information to the best-response prediction (AUC [95% CI] 0.548 (0.188, 0.808) vs. 0.487 (0.139, 0.743)), the prediction of PFS after six months (AUC [95% CI] 0.699 (0.436, 0.958) vs. 0.604 (0.373, 0.867)), or the overall survival prediction after six and twelve months (AUC [95% CI] 0.685 (0.188, 0.967) vs. 0.766 (0.433, 1.000) and AUC [95% CI] 0.554 (0.163, 0.781) vs. 0.616 (0.271, 1.000), respectively). CONCLUSIONS: The results showed no additional value of baseline whole-body CT radiomics for best-response prediction, progression-free survival prediction for six months, or six-month and twelve-month overall survival prediction for stage IV melanoma patients receiving first-line targeted therapy. These results need to be validated in a larger cohort.

6.
Med Image Anal ; 82: 102605, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36156419

RESUMEN

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/diagnóstico por imagen , Inteligencia Artificial , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen
7.
Cancers (Basel) ; 14(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740659

RESUMEN

BACKGROUND: This study investigated whether a machine-learning-based combination of radiomics and clinical parameters was superior to the use of clinical parameters alone in predicting therapy response after three months, and overall survival after six and twelve months, in stage-IV malignant melanoma patients undergoing immunotherapy with PD-1 checkpoint inhibitors and CTLA-4 checkpoint inhibitors. METHODS: A random forest model using clinical parameters (demographic variables and tumor markers = baseline model) was compared to a random forest model using clinical parameters and radiomics (extended model) via repeated 5-fold cross-validation. For this purpose, the baseline computed tomographies of 262 stage-IV malignant melanoma patients treated at a tertiary referral center were identified in the Central Malignant Melanoma Registry, and all visible metastases were three-dimensionally segmented (n = 6404). RESULTS: The extended model was not significantly superior compared to the baseline model for survival prediction after six and twelve months (AUC (95% CI): 0.664 (0.598, 0.729) vs. 0.620 (0.545, 0.692) and AUC (95% CI): 0.600 (0.526, 0.667) vs. 0.588 (0.481, 0.629), respectively). The extended model was not significantly superior compared to the baseline model for response prediction after three months (AUC (95% CI): 0.641 (0.581, 0.700) vs. 0.656 (0.587, 0.719)). CONCLUSIONS: The study indicated a potential, but non-significant, added value of radiomics for six-month and twelve-month survival prediction of stage-IV melanoma patients undergoing immunotherapy.

8.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35158980

RESUMEN

The spleen is often involved in malignant lymphoma, which manifests on CT as either splenomegaly or focal, hypodense lymphoma lesions. This study aimed to investigate the diagnostic value of radiomics features of the spleen in classifying malignant lymphoma against non-lymphoma as well as the determination of malignant lymphoma subtypes in the case of disease presence-in particular Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), and follicular lymphoma (FL). Spleen segmentations of 326 patients (139 female, median age 54.1 +/- 18.7 years) were generated and 1317 radiomics features per patient were extracted. For subtype classification, we created four different binary differentiation tasks and addressed them with a Random Forest classifier using 10-fold cross-validation. To detect the most relevant features, permutation importance was analyzed. Classifier results using all features were: malignant lymphoma vs. non-lymphoma AUC = 0.86 (p < 0.01); HL vs. NHL AUC = 0.75 (p < 0.01); DLBCL vs. other NHL AUC = 0.65 (p < 0.01); MCL vs. FL AUC = 0.67 (p < 0.01). Classifying malignant lymphoma vs. non-lymphoma was also possible using only shape features AUC = 0.77 (p < 0.01), with the most important feature being sphericity. Based on only shape features, a significant AUC could be achieved for all tasks, however, best results were achieved combining shape and textural features. This study demonstrates the value of splenic imaging and radiomic analysis in the diagnostic process in malignant lymphoma detection and subtype classification.

9.
Eur Radiol ; 32(1): 690-701, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34170365

RESUMEN

OBJECTIVES: To develop and validate a deep learning-based algorithm for segmenting and quantifying the physiological and diseased aorta in computed tomography angiographies. METHODS: CTA exams of the aorta of 191 patients (68.1 ± 14 years, 128 male), performed between 2015 and 2018, were retrospectively identified from our imaging archive and manually segmented by two investigators. A 3D U-Net model was trained on the data, which was divided into a training, a validation, and a test group at a ratio of 7:1:2. Cases in the test group (n = 41) were evaluated to compare manual and automatic segmentations. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff surface distance (HSD) were extracted. Maximum diameter, effective diameter, and area were quantified and compared between both segmentations at eight anatomical landmarks, and at the maximum area of an aneurysms if present (n = 14). Statistics included error calculation, intraclass correlation coefficient, and Bland-Altman analysis. RESULTS: A DSC of 0.95 [0.94; 0.95] and an MSD of 0.76 [0.06; 0.99] indicated close agreement between segmentations. HSD was 8.00 [4.47; 10.00]. The largest absolute errors were found in the ascending aorta with 0.8 ± 1.5 mm for maximum diameter and at the coeliac trunk with - 30.0 ± 81.6 mm2 for area. Results for absolute errors in aneurysms were - 0.5 ± 2.3 mm for maximum diameter, 0.3 ± 1.6 mm for effective diameter, and 64.9 ± 114.9 mm2 for area. ICC showed excellent agreement (> 0.9; p < 0.05) between quantitative measurements. CONCLUSIONS: Automated segmentation of the aorta on CTA data using a deep learning algorithm is feasible and allows for accurate quantification of the aortic lumen even if the vascular architecture is altered by disease. KEY POINTS: • A deep learning-based algorithm can automatically segment the aorta, mostly within acceptable margins of error, even if the vascular architecture is altered by disease. • Quantifications performed in the segmentations were mostly within clinically acceptable limits, even in pathologically altered segments of the aorta.


Asunto(s)
Angiografía por Tomografía Computarizada , Aprendizaje Profundo , Algoritmos , Aorta/diagnóstico por imagen , Humanos , Masculino , Estudios Retrospectivos
10.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830885

RESUMEN

Finding prognostic biomarkers with high accuracy in patients with pancreatic cancer (PC) remains a challenging problem. To improve the prediction of survival and to investigate the relevance of quantitative imaging biomarkers (QIB) we combined QIB with established clinical parameters. In this retrospective study a total of 75 patients with metastatic PC and liver metastases were analyzed. Segmentations of whole liver tumor burden (WLTB) from baseline contrast-enhanced CT images were used to derive QIBs. The benefits of QIBs in multivariable Cox models were analyzed in comparison with two clinical prognostic models from the literature. To discriminate survival, the two clinical models had concordance indices of 0.61 and 0.62 in a statistical setting. Combined clinical and imaging-based models achieved concordance indices of 0.74 and 0.70 with WLTB volume, tumor burden score (TBS), and bilobar disease being the three WLTB parameters that were kept by backward elimination. These combined clinical and imaging-based models have significantly higher predictive performance in discriminating survival than the underlying clinical models alone (p < 0.003). Radiomics and geometric WLTB analysis of patients with metastatic PC with liver metastases enhances the modeling of survival compared with models based on clinical parameters alone.

11.
Med Image Anal ; 72: 102139, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216959

RESUMEN

Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Tórax
12.
Res Sq ; 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34100010

RESUMEN

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020.

14.
Int J Comput Assist Radiol Surg ; 16(3): 457-466, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33646521

RESUMEN

PURPOSE: We aimed to develop a predictive model of disease severity for cirrhosis using MRI-derived radiomic features of the liver and spleen and compared it to the existing disease severity metrics of MELD score and clinical decompensation. The MELD score is compiled solely by blood parameters, and so far, it was not investigated if extracted image-based features have the potential to reflect severity to potentially complement the calculated score. METHODS: This was a retrospective study of eligible patients with cirrhosis ([Formula: see text]) who underwent a contrast-enhanced MR screening protocol for hepatocellular carcinoma (HCC) screening at a tertiary academic center from 2015 to 2018. Radiomic feature analyses were used to train four prediction models for assessing the patient's condition at time of scan: MELD score, MELD score [Formula: see text] 9 (median score of the cohort), MELD score [Formula: see text] 15 (the inflection between the risk and benefit of transplant), and clinical decompensation. Liver and spleen segmentations were used for feature extraction, followed by cross-validated random forest classification. RESULTS: Radiomic features of the liver and spleen were most predictive of clinical decompensation (AUC 0.84), which the MELD score could predict with an AUC of 0.78. Using liver or spleen features alone had slightly lower discrimination ability (AUC of 0.82 for liver and AUC of 0.78 for spleen features only), although this was not statistically significant on our cohort. When radiomic prediction models were trained to predict continuous MELD scores, there was poor correlation. When stratifying risk by splitting our cohort at the median MELD 9 or at MELD 15, our models achieved AUCs of 0.78 or 0.66, respectively. CONCLUSIONS: We demonstrated that MRI-based radiomic features of the liver and spleen have the potential to predict the severity of liver cirrhosis, using decompensation or MELD status as imperfect surrogate measures for disease severity.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Enfermedad Hepática en Estado Terminal/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Bazo/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Área Bajo la Curva , Femenino , Humanos , Cirrosis Hepática/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
15.
Eur Radiol ; 31(2): 834-846, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32851450

RESUMEN

OBJECTIVES: To investigate the prediction of 1-year survival (1-YS) in patients with metastatic colorectal cancer with use of a systematic comparative analysis of quantitative imaging biomarkers (QIBs) based on the geometric and radiomics analysis of whole liver tumor burden (WLTB) in comparison to predictions based on the tumor burden score (TBS), WLTB volume alone, and a clinical model. METHODS: A total of 103 patients (mean age: 61.0 ± 11.2 years) with colorectal liver metastases were analyzed in this retrospective study. Automatic segmentations of WLTB from baseline contrast-enhanced CT images were used. Established biomarkers as well as a standard radiomics model building were used to derive 3 prognostic models. The benefits of a geometric metastatic spread (GMS) model, the Aerts radiomics prior model of the WLTB, and the performance of TBS and WLTB volume alone were assessed. All models were analyzed in both statistical and predictive machine learning settings in terms of AUC. RESULTS: TBS showed the best discriminative performance in a statistical setting to discriminate 1-YS (AUC = 0.70, CI: [0.56, 0.90]). For the machine learning-based prediction for unseen patients, both a model of the GMS of WLTB (0.73, CI: [0.60, 0.84]) and the Aerts radiomics prior model (0.76, CI: [0.65, 0.86]) applied on the WLTB showed a numerically higher predictive performance than TBS (0.68, CI: [0.54, 0.79]), radiomics (0.65, CI: [0.55, 0.78]), WLTB volume alone (0.53, CI: [0.40. 0.66]), or the clinical model (0.56, CI: [0.43, 0.67]). CONCLUSIONS: The imaging-based GMS model may be a first step towards a more fine-grained machine learning extension of the TBS concept for risk stratification in mCRC patients without the vulnerability to technical variance of radiomics. KEY POINTS: • CT-based geometric distribution and radiomics analysis of whole liver tumor burden in metastatic colorectal cancer patients yield prognostic information. • Differences in survival are possibly attributable to the spatial distribution of metastatic lesions and the geometric metastatic spread analysis of all liver metastases may serve as robust imaging biomarker invariant to technical variation. • Imaging-based prediction models outperform clinical models for 1-year survival prediction in metastatic colorectal cancer patients with liver metastases.


Asunto(s)
Neoplasias , Tomografía Computarizada por Rayos X , Anciano , Humanos , Hígado , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Carga Tumoral
16.
Rofo ; 193(3): 276-288, 2021 Mar.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-33242898

RESUMEN

PURPOSE: The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. MATERIALS AND METHODS: The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. RESULTS: First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. CONCLUSION: It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. KEY POINTS: · The DRG-ÖRG IRP is a web/cloud-based radiomics platform based on a public-private partnership.. · The DRG-ÖRG IRP can be used for the creation of quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis.. · First results show the applicability of left ventricular myocardial segmentation using a neural network and segment-based LGE detection using radiomic image features.. · The DRG-ÖRG IRP offers the possibility of integrating pre-trained neural networks and networking of scientific groups.. CITATION FORMAT: · Overhoff D, Kohlmann P, Frydrychowicz A et al. The International Radiomics Platform - An Initiative of the German and Austrian Radiological Societies. Fortschr Röntgenstr 2021; 193: 276 - 287.


Asunto(s)
Corazón , Procesamiento de Imagen Asistido por Computador , Radiología , Inteligencia Artificial , Austria , Nube Computacional , Alemania , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Acceso a Internet , Radiología/métodos , Reproducibilidad de los Resultados , Sociedades
17.
J Med Imaging (Bellingham) ; 7(6): 064001, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33195733

RESUMEN

Purpose: Hippocampus contouring for radiotherapy planning is performed on MR image data due to poor anatomical visibility on computed tomography (CT) data. Deep learning methods for direct CT hippocampus auto-segmentation exist, but use MR-based training contours. We investigate if these can be replaced by CT-based contours without loss in segmentation performance. This would remove the MR not only from inference but also from training. Approach: The hippocampus was contoured by medical experts on MR and CT data of 45 patients. Convolutional neural networks (CNNs) for hippocampus segmentation on CT were trained on CT-based or propagated MR-based contours. In both cases, their predictions were evaluated against the MR-based contours considered as the ground truth. Performance was measured using several metrics, including Dice score, surface distances, and contour Dice score. Bayesian dropout was used to estimate model uncertainty. Results: CNNs trained on propagated MR contours (median Dice 0.67) significantly outperform those trained on CT contours (0.59) and also experts contouring manually on CT (0.59). Differences between the latter two are not significant. Training on MR contours results in lower model uncertainty than training on CT contours. All contouring methods (manual or CNN) on CT perform significantly worse than a CNN segmenting the hippocampus directly on MR (median Dice 0.76). Additional data augmentation by rigid transformations improves the quantitative results but the difference remains significant. Conclusions: CT-based training contours for CT hippocampus segmentation cannot replace propagated MR-based contours without significant loss in performance. However, if MR-based contours are used, the resulting segmentations outperform experts in contouring the hippocampus on CT.

18.
Sci Rep ; 8(1): 15497, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341319

RESUMEN

Automatic liver tumor segmentation would have a big impact on liver therapy planning procedures and follow-up assessment, thanks to standardization and incorporation of full volumetric information. In this work, we develop a fully automatic method for liver tumor segmentation in CT images based on a 2D fully convolutional neural network with an object-based postprocessing step. We describe our experiments on the LiTS challenge training data set and evaluate segmentation and detection performance. Our proposed design cascading two models working on voxel- and object-level allowed for a significant reduction of false positive findings by 85% when compared with the raw neural network output. In comparison with the human performance, our approach achieves a similar segmentation quality for detected tumors (mean Dice 0.69 vs. 0.72), but is inferior in the detection performance (recall 63% vs. 92%). Finally, we describe how we participated in the LiTS challenge and achieved state-of-the-art performance.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Hepáticas/patología
19.
Mol Imaging Biol ; 20(4): 641-649, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29270848

RESUMEN

PURPOSE: In patients with Hodgkin (HL) and non-Hodgkin lymphoma (NHL), primary staging, as well as intermediate and late response assessment, is often performed by integrated 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/X-ray computed tomography (PET/CT). The purpose of this analysis was to evaluate if findings in patients with histopathologically proven HL or NHL might correlate with semi-automated density measurements of target lesions (TLs) in the CT component of the integrated PET/CT examination. PROCEDURES: After approval by the institutional review board, 176 lymph nodes (LN) in 90 PET/CT examinations of 90 patients were retrospectively analyzed (HL, 108 TLs out of 55 patients; NHL, 68 TLs out of 35 patients). PET/CT was performed for reasons of primary staging, response evaluation as interim PET, or as final examination after therapy, according to the clinical schedule. Analyses of TLs were performed on the basis of tracer uptake (SUV) 60 min after tracer injection and volumetric CT histogram analysis in non-contrast-enhanced CT. RESULTS: All patients were diagnosed with HL or NHL in a pretreatment biopsy. Prior to therapy induction, staging of all patients was performed using contrast-enhanced CT of the neck to the pelvis, or by [18F]FDG PET/CT. Of the 176 TLs, 119 were classified as malignant, and 57 were benign. Malignant TLs had significantly higher CT density values compared to benign (p < 0.01). CONCLUSION: Density measurements of TLs in patients with HL and NHL correlate with the dignity of TLs and might therefore serve as a complementary surrogate parameter for the differentiation between malignant and benign TLs. A possible density threshold in clinical routine might be a 20-Hounsfield units (HU) cutoff value to rule out benignancy in TLs that are above the 20-HU threshold.


Asunto(s)
Linfoma/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Curva ROC
20.
J Nucl Med ; 58(12): 1949-1955, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28637799

RESUMEN

68Ga-prostate-specific membrane antigen (PSMA) PET/CT is a new method to detect early nodal metastases in patients with biochemical relapse of prostate cancer. In this retrospective investigation, the dimensions, volume, localization, and SUVmax of nodes identified by 68Ga-PSMA were correlated to their Gleason score (GS) at diagnosis. Methods: All PET/CT images were acquired 60 ± 10 min after intravenous injection of 68Ga-PSMA (mean dose, 176 MBq). In 147 prostate cancer patients (mean age, 68 y; range, 44-87 y) with prostate-specific antigen relapse (mean prostate-specific antigen level, 5 ng/mL; range, 0.25-294 ng/mL), 362 68Ga-PSMA PET-positive lymph nodes (LNs) were identified. These patients were classified on the basis of their histopathology at primary diagnosis into either low- (GS ≤ 6, well differentiated), intermediate- (GS = 7, moderately differentiated), or high-GS cohorts (GS ≥ 8, poorly differentiated prostate cancer). Using semiautomated LN segmentation software (Fraunhofer MEVIS), we measured node volume and short-axis dimensions (SADs) and long-axis dimensions based on CT and compared with the SUVmax Nodes demonstrating uptake of 68Ga-PSMA with an SUVmax of 2.0 or more were considered PSMA-positive, and nodes with an SAD of 8 mm or more were considered positive by morphologic criteria. Results: Mean SUVmax was 13.5 (95% confidence interval [CI], 10.9-16.1), 12.4 (95% CI, 9.9-14.9), and 17.8 (95% CI, 15.4-20.3) within the low-, intermediate-, and high-GS groups, respectively. The morphologic assessment of the 68Ga-PSMA-positive LN demonstrated that the low-GS cohort presented with smaller 68Ga-PSMA-positive LNs (mean SAD, 7.7 mm; n = 113), followed by intermediate- (mean SAD, 9.4 mm; n = 122) and high-GS cohorts (mean SAD, 9.5 mm; n = 127). On the basis of the CT morphology criteria, only 34% of low-GS patients, 56% of intermediate-GS patients, and 53% of high-GS patients were considered CT positive. Overall, 68Ga-PSMA imaging led to a reclassification of stage in 90 patients (61%) from cN0 to cN1 over CT. Conclusion:68Ga-PSMA PET is a promising modality in biochemical recurrent prostate cancer patients for N staging. Conventional imaging underestimates LN involvement compared with PSMA molecular staging score in each GS cohort. The sensitivity of 68Ga-PSMA PET/CT enables earlier detection of subcentimeter LN metastases in the biochemical recurrence setting.


Asunto(s)
Ganglios Linfáticos/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Adulto , Anciano , Antígenos de Superficie , Estudios de Cohortes , Ácido Edético/análogos & derivados , Isótopos de Galio , Radioisótopos de Galio , Glutamato Carboxipeptidasa II , Humanos , Procesamiento de Imagen Asistido por Computador , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Oligopéptidos , Compuestos Organometálicos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...