Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400321, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087920

RESUMEN

Hearing loss (HL) affects more than 5% of the global population, with projections indicating an impact of up to 50% on young individuals in the next years. HL treatments remain limited due to the inner ear's hermeticism. HL often involves inflammatory processes, underscoring the need for enhanced delivery of antiinflammatory agents to the inner ear. Our research focuses on the development of a directed therapy based on magnetic nanoparticles (MNPs). We previously synthesized biocompatible folic acid-coated iron oxide-core nanoparticles (MNPs@FA) as potential carriers for the anti-inflammatory Diclofenac (Dfc). This study aims to incorporate Dfc onto MNPs@FA to facilitate targeted drug delivery to the inner ear. Through optimizing the loading procedure, we achieved optimal loading capacity. Dfc release was studied in the simulated target fluid and the administration vehicle. Complete characterization is also shown. In vitro biocompatibility testing ensured the biosafety of the resulting formulation. Subsequent ex vivo targeting assays on murine cochleae validated the nanosystems' ability to penetrate the round window membrane, one of the main HL therapy barriers. These findings serve as validation before continuing to more complex in vivo studies. Together, the data here presented represent an advancement in addressing unmet medical needs in HL therapy.

2.
J Biomater Appl ; 38(9): 1000-1009, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38456269

RESUMEN

Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.


Asunto(s)
Flavonas , Flavonoides , Neoplasias , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Flavonoides/química , Dióxido de Silicio/química , Antioxidantes/química , Hierro , Porosidad
3.
Pharmaceutics ; 14(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35057099

RESUMEN

The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review's next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.

4.
Colloids Surf B Biointerfaces ; 170: 470-478, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29960215

RESUMEN

Magnetic iron oxide nanoparticles (MNPs) have been prepared and stabilized with three organic acids (tartaric, malic and ascorbic) in order to obtain biocompatible and water dispersible MNPs with potential to bind specifically to tumoral cancer cells. An in deep characterization was performed aiming to verify the presence and effect of the coating and stabilizer on MNPs surface. Besides the mechanisms followed by the different acids to bind MNPs were elucidated and used to justify the differences in the physicochemical properties of each formulation. Data related to characterization revealed that MNPs coated with ascorbic acid (MNPs-AA) resulted the most suitable in terms of their size, surface charge and stability along the time. Besides, ascorbic acid may be recognized by GLUTs receptors that are overexpressed in several kinds of tumoral cells. Therefore, MNPs-AA was selected to explore its performance in both MRI and in vitro assays using human colon cancer cells HCT 116. MRI experiments were performed in clinical equipment using a series of aqueous dispersions of MNPs-AA that were evaluated as T2 contrast agent. The T2- weighted images obtained as well as the calculated r2, indicated that MNPs-AA could act as efficient T2 contrast agent for MRI. Regarding in vitro assays, MNPs-AA did not alter the cellular function neither exert cytotoxicity using the three explored doses. The internalization of the nanoparticles on the cellular structure was confirmed quanti and qualitatively using atomic absorption spectroscopy and Prussian blue techniques respectively. From these results, it emerges that ascorbic acid coated-magnetite nanoparticles may be used as alternative contrast agent to avoid or minimize some toxicological issues related to the widely used gadolinium.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagen , Ácido Ascórbico/química , Humanos , Tamaño de la Partícula , Propiedades de Superficie
5.
Biomed Pharmacother ; 93: 1098-1115, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28738519

RESUMEN

Cardiovascular complications derivate from atherosclerosis are the main cause of death in western world. An early detection of vulnerable atherosclerotic plaques is primordial for a better care of patients suffering the pathology. In this context nanotechnology has emerged as a promising tool to achieve this goal. Nanoparticles based on magnetic iron oxide (MNPs) have been extensively studied in cardiovascular diseases diagnosis, as well as in the treatment and diagnostic of other pathologies. The present review aims to describe and analyze the most current literature regarding to this topic, offering the level of detail required to reproduce the experimental tasks providing a critical input of the latest available reports. The current diagnostic features are presented and compared, highlighting their advantages and disadvantages. Information on novel technology intended to this purpose is also recompiled and in deep analyzed. Special emphasis is placed in magnetic nanotechnology, remarking the possibility to assess selective and multifunctional systems to the early detection of artherosclerotic pathologies. Finally, in view of the state of the art, the future perspectives about the trends on MNPs in artherosclerorsis diagnostic and treatment have also been addressed.


Asunto(s)
Aterosclerosis/diagnóstico , Compuestos Férricos/administración & dosificación , Nanopartículas de Magnetita/administración & dosificación , Animales , Aterosclerosis/patología , Medios de Contraste/administración & dosificación , Humanos , Imagen por Resonancia Magnética/métodos , Nanotecnología/métodos , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA